Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water-soluble biphasic hydroformylation

Water-soluble phosphate ligands have also been explored. A rhodium complex containing sulfonated calix [4]arene (4) was reported to be sufficiently stable in water and allowed water/toluene biphasic hydroformylation of methyl 3-pentenoate (Scheme 6.2), giving rise to a branched aldehyde as the only product in 46% yield at 95% conversion at 60 °C after 3h. Moreover, the branched aldehyde was hydrogenated and then lactonized to give a lactone [21]. [Pg.204]

An example of a large scale application of the aqueous biphasic concept is the Ruhrchemie/Rhone-Poulenc process for the hydroformylation of propylene to n-butanal (Eqn. (15)), which employs a water-soluble rhodium(I) complex of trisulphonated triphenylphosphine (tppts) as the catalyst (Cornils and Wiebus, 1996). [Pg.46]

Table 28.3. Comparison of water-soluble solvents on biphasic hydroformylation of 1-octene. Table 28.3. Comparison of water-soluble solvents on biphasic hydroformylation of 1-octene.
An important feature of biphasic hydroformylation is the separability due to density differences. Because of the differences in density of the polar compound water (1.0 gem"1) and the hydrophobic oxo products (average 0.8), no problems occur. Additionally, the hydroformylation products are not sensitive to water. Another important question is to what extent water and the reactants are mixed. Therefore, the reactor in Figure 5.3 b), a continuously stirred tank reactor (CSTR) [22], normally contains usual installations to guarantee excellent mixing. For the lower alkenes with their significant water solubility (propene, butene) this is no problem. In these cases, the hydroformylation reaction takes place at the interfacial region [23]. [Pg.110]

The group of Olivier-Bourbigou has shown, for example, that phosphite ligands can be used in the Rh-catalysed hydroformylation in ionic liquids as well as the well-known phosphine systems [51], Since phosphite ligands are usually unstable in aqueous media this adds, apart from the much better solubility of higher olefins in ionic liquids, another important advantage to biphasic hydroformylation using ionic liquids in comparison to the established biphasic reactions in water. [Pg.198]

The limitations of hydroformylation reactions in water are the same as those of hydrogenation reactions, i.e. the poor solubility of the substrates (see Section 8.2.1). While aqueous-organic biphasic hydroformylation works well for alkenes with chain lengths up to C7, the solubility of longer chain alkenes is too low for viable processes. Although simple alkenes are poorly soluble, many functional alkenes have solubilities in water that are sufficiently high to avoid mass transfer problems, but at the same time this can impede separation. [Pg.172]

A series of water-soluble polyether-substituted triphenyl phosphines (PETPPs) la-c has been successfully employed by Jin et al. [11] in the thermoregulated hydroformylation of 1-dodecene in the biphasic water/toluene system. The catalysts exhibit very good catalytic properties with conversions up to 93% and about 85% selectivity for aldehyde formation. The catalyst derived from rhodium(III) chloride and ligand Ic could be reused in four consecutive cycles without significant loss of activity or chemoselectivity. The n-selectivity of the product aldehydes was not determined. [Pg.55]

For instance, catalysis in liquid/liquid two phases is generally referred to as biphasic catalysis and has widened the practical scope of homogeneous catalysis the catalyst is present in one liquid phase, while reactants and products are present in the other liquid phase. Thus, the catalyst can be separated by simple phase separation. Celanese is operating a 300 000 t/a plant for propylene hydroformylation using a water-soluble rhodium phosphine complex in a biphasic mode of operation at the Ruhrchemie site in Oberhausen [142],... [Pg.128]

It is interesting to note that no specific study was devoted to the aqueous biphasic hydrogenation of aldehydes with water-soluble cobalt-phosphine complexes, although such a property has long been known from hydroformylation experiments [199,200]. [Pg.100]

With a water-soluble hydroformylation catalyst the overwhelming majority of the reactions take place in an aqueous/organic biphasic mixture for the simple reason of most olefins being insoluble in water. Research in aqueous organometallic hydroformylation is therefore directed to several aims ... [Pg.107]

Veiy recently it was disclosed, that the water-soluble dinuclear complex obtained in the reaction of [ RhCl(COD) 2] and 11-mercaptoundecanoic acid catalyzed the aqueous/organic biphasic hydroformylation of styrene and various arene-substituted styrenes with good activity and useful selectivity to the branched aldehydes (Scheme 4.6) [82], Below pH 4 the acid form of the complex [ Rh(p-S(CH2)ioC02H)(COD) 2] precipitated virtually quantitatively but could be redissolved in water on addition of base. Importantly, higher olefins could also be hydroformylated by this catalyst (for 1-octene TOP = 17.5 h at 55 °C, 35 bar syngas, n/i = 1.0). [Pg.116]

In the hydroformylation of alkenes, the major differences between the [RhH(CO)(PPh3)3], and [RhH(CO)(TPPTS)3] catalysts are the lower activity and higher selectivity of the water-soluble complex in aqueous/organic biphasic systems. Lower activity is not unexpected, since alkenes have limited solubility in water (see 4.1.1.1, Table 3). On the other hand, the higher selectivity towards formation of the linear product deserves more scrutiny. [Pg.118]

As mentioned earlier, in the Ruhrchemie-Rhone Poulenc process for propene hydroformylation the pH of the aqueous phase is kept between 5 and 6. This seems to be an optimum in order to avoid acid- and base-catalyzed side reactions of aldehydes and degradation of TPPTS. Nevertheless, it has been observed in this [93] and in many other cases [38,94-96,104,128,131] that the [RhH(CO)(P)3] (P = water-soluble phosphine) catalysts work more actively at higher pH. This is unusual for a reaction in which (seemingly) no charged species are involved. For example, in 1-octene hydroformylation with [ RhCl(COD) 2] + TPPTS catalyst in a biphasic medium the rates increased by two- to five-fold when the pH was changed from 7 to 10 [93,96]. In the same detailed kinetic studies [93,96] it was also established that the rate of 1-octene hydroformylation was a significantly different function of reaction parameters such as catalyst concentration, CO and hydrogen pressure at pH 7 than at pH 10. [Pg.120]

There is very little information available on asymmetric hydroformylation in aqueous solutions or biphasic mixtures despite that asymmetric hydroformylation in organic solvents has long been studied very actively. This is even more surprising since enantioselective hydrogenation in aqueous media has been traditionally a focal point of aqueous organometallic catalysis and several water soluble phosphine ligands have been synthetized in enantiomerically pure form. [Pg.122]

Similar to the above case, hydroformylation of 1-hexene using a water-soluble rhodium catalyst [RhH(CO)(TPPMS)3] gave lower yields when a-cyclodextrin was added to the biphasic reaction system [14]. Again, the reason was suspected in the interaction between the cyclodextrin and the rhodium catalyst. [Pg.236]

The OATS concept was tested on the catalytic hydroformylation of 1-octene, a hydrophobic substrate. This reaction was selected because it has previously been shown to be inactive for traditional aqueous biphasic systems (18). The catalyst used was a Rh/TPPTS complex, an industrial water soluble catalyst (22). The application of the OATS concept increased catalytic efficiency by a factor of 65 (TOP increased from 5 h for biphasic to 325 h for monophasic). [Pg.400]

Hydroformylation of Mid Range Olefins - Rhodium/tppts catalysts exhibit low catalytic activity in the hydroformylation of mid range olefins (C5-Cg) in a two phase system due to the much lower solubility of such olefins in water. In the Rh/tppts catalysed biphasic hydroformylation of 1-hexene, for example the conversion is only 11-22% with a n/i ratio of aldehydes of 98/2.353,373 The rate of 1-hexene hydroformylation catalysed by Rh/tppts increased by a factor 2.3 when subjected to ultrasound (35 kHz) and high stirring rates.360,361... [Pg.142]

Table 9 summarizes further biphasic hydroformylation reactions of various mid range terminal and internal olefins such as 1-hexene, 1-octene and 2-hexene catalysed by different water soluble systems. [Pg.143]

Kalck et /.96,359,362 studied the biphasic hydroformylation of 1-hexene using water soluble dinuclear species such as Rh2(m-S-lBu)2(CO)2(tppts)2 and C0/H20 where H20 acts both as a solvent and hydrogen source according to the water gas shift reaction (Equation 2). The turnover frequency (TOF) obtained was 40 h 1 and the n/i ratio of the aldehyde 96/4.96 Using RhH(CO)(tppts)3 catalysts lower rates were obtained under the same conditions.96... [Pg.143]

Water soluble Rh/tppts and Rh/tppms complexes dissolved in nonaqueous media such as the ionic liquids, l-ethyl-3-methylimidazolium or l-n-butyl-3-methylimidazolium salt have also been used as catalysts in the hydroformylation of 1-pentene employing a two phase system.15,16 The yields obtained were 16-33% (TOF=59-103 h 1) without any leaching of the rhodium from the ionic liquid to the aldehydes/feedstock phase. Rh/PPh3 catalysts exhibited higher rates (TOF=333 h 1) for the same biphasic reaction albeit with leaching of rhodium due to the uncharged nature of the catalytic system.15... [Pg.144]

An important development in the past 15 years in hydroformylation technology was the introduction of biphasic homogeneous catalysis. Kuntz (62) expressed the basic idea of a new generation of water-soluble oxo catalysts with triphenylphosphane trisulfonate (tppts as the sodium salt) as a ligand for a rhodium-complex-catalyzed hydroformylation process. Ruhrchemie AG adapted the idea on the basis of research done at Rhone-Poulenc and developed it into an industrially viable process, which was... [Pg.483]


See other pages where Water-soluble biphasic hydroformylation is mentioned: [Pg.417]    [Pg.97]    [Pg.234]    [Pg.116]    [Pg.156]    [Pg.250]    [Pg.190]    [Pg.54]    [Pg.278]    [Pg.11]    [Pg.20]    [Pg.114]    [Pg.133]    [Pg.138]    [Pg.140]    [Pg.238]    [Pg.172]    [Pg.92]    [Pg.395]    [Pg.234]    [Pg.449]    [Pg.143]    [Pg.144]    [Pg.147]    [Pg.148]    [Pg.161]    [Pg.171]    [Pg.485]    [Pg.487]   


SEARCH



Biphase

Biphasic

Hydroformylations biphasic

Water hydroformylation

Water-soluble biphasic hydroformylation catalyst

© 2024 chempedia.info