Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water hydrochloric acid and

Hexamethylene glycol, HO(CH2)gOH. Use 60 g. of sodium, 81 g. of diethyl adipate (Sections 111,99 and III,100) and 600 ml. of super-d ethyl alcohol. All other experimental detaUs, including amounts of water, hydrochloric acid and potassium carbonate, are identical with those for Telramelhylene Glycol. The yield of hexamethylene glycol, b.p. 146-149°/ 7 mm., is 30 g. The glycol may also be isolated by continuous extraction with ether or benzene. [Pg.251]

If, for example, a mixture of ethanol and water is distilled, the concentration of the alcohol steadily increases until it reaches 96 per cent by mass, when the composition of the vapour equals that of the liquid, and no further enrichment occurs. This mixture is called an azeotrope, and it cannot be separated by straightforward distillation. Such a condition is shown in the y — x curves of Fig. 11.4 where it is seen that the equilibrium curve crosses the diagonal, indicating the existence of an azeotrope. A large number of azeotropic mixtures have been found, some of which are of great industrial importance, such as water-nitric acid, water-hydrochloric acid, and water-alcohols. The problem of non-ideality is discussed in Section 11.2.4 where the determination of the equilibrium data is considered. When the activity coefficient is greater than unity, giving a positive deviation from Raoult s law, the molecules of the components in the system repel each... [Pg.616]

A 300-ml flask was charged with the step 1 product (1.00 g) suspended in 10 ml of THF and then cooled to 0°C and treated with the entire Grignard reagent and the mixture refluxed for 5 hours. The mixture was cooled and treated with 10 ml of water/hydrochloric acid and a two-phase solution obtained. The organic phase was isolated and washed with water and saturated saline, dried over Na2S04, concentrated, and 1.65 g of residue obtained. The residue was purified by silica gel column... [Pg.150]

Table IV shows the results of these experiments. Serum replacement with water gave low values for the surface charge because of incomplete replacement of the Na+ and K+ ions by H+ ions. However, serum replacement with water, hydrochloric acid, and water gave values equal to, or slightly less than, those obtained by ion exchange, demonstrating the efficacy of this new cleaning method. The values for the dialyzed samples were also significantly lower than those obtained by ion exchange. Table IV shows the results of these experiments. Serum replacement with water gave low values for the surface charge because of incomplete replacement of the Na+ and K+ ions by H+ ions. However, serum replacement with water, hydrochloric acid, and water gave values equal to, or slightly less than, those obtained by ion exchange, demonstrating the efficacy of this new cleaning method. The values for the dialyzed samples were also significantly lower than those obtained by ion exchange.
Capsules GC Add water, hydrochloric acid and chloroform to contents and shake, filter chloroform layer through sodium sulfate (Same procedure as for seco barbital)... [Pg.342]

Properties Orange-red crystal. Air stable. Slightly soluble in water, hydrochloric acid and insoluble in organic solvents. [Pg.259]

In an early paper Gerhardt had pointed out that simple compounds of considerable stability, such as water, hydrochloric acid, and ammonia, are frequently produced in organic decompositions, but the original substance can rarely be formed again from its decomposition products hence the latter should not be assumed to be its components. [Pg.420]

As cocatalysts one uses water, hydrochloric acids and chlorinated aliphatic hydrocarbons. The quantities of cocatalysts introduced into the reaction environment are very small, since the increase of iheir concentration facilitates the completion of the chain reaction, what leads to the formation of polymers of lower molecular mass. The use of water in excess leads to the catalyst deactivation as a result of its hydrolysis. [Pg.280]

Table 3 Interaction energy between water, hydrochloric acid and sulfuric acid with the reconstructed sulfur terminated (001) chalcopyrite surface. [Pg.177]

CH2 CH C CH. Colourless gas with a sweet odour b.p. 5°C. Manufactured by the controlled low-temperature telomerization of ethyne in the presence of an aqueous solution of CuCI and NH Cl. Reduced by hydrogen to butadiene and, finally, butane. Reacts with water in the presence of HgSO to give methyl vinyl ketone. Forms salts. Forms 2-chloro-butadiene (chloroprene) with hydrochloric acid and certain metallic chlorides. [Pg.266]

Hydrolysis of Potassium Ethyl Sulphate. Dissolve about i g. of the crystals in about 4 ml. of cold distilled water, and divide the solution into two portions, a) To one portion, add barium chloride solution. If pure potassium ethyl sulphate were used, no precipitate should now form, as barium ethyl sulphate is soluble in water. Actually however, almost all samples of potassium ethyl sulphate contain traces of potassium hydrogen sulphate formed by slight hydrolysis of the ethyl compound during the evaporation of its solution, and barium chloride almost invariably gives a faint precipitate of barium sulphate. b) To the second portion, add 2-3 drops of concentrated hydrochloric acid, and boil the mixture gently for about one minute. Cool, add distilled water if necessary until the solution has its former volume, and then add barium chloride as before. A markedly heavier precipitate of barium sulphate separates. The hydrolysis of the potassium ethyl sulphate is hastened considerably by the presence of the free acid Caustic alkalis have a similar, but not quite so rapid an effect. [Pg.79]

Dissolve 15 ml. (15-4 g.) of aniline in a mixture of 40 ml. of concentrated hydrochloric acid and 40 ml. of water contained in a 250 ml. conical flask. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution reaches 5°. Dissolve I2 5 g. of powdered sodium nitrite in 30 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline hydrochloride solution, meanwhile keeping the latter well stirred by means of a thermometer. Heat is evolved by the reaction, and therefore a short interval should be allowed between consecutive additions of the sodium nitrite, partly to allow the temperature to fall again to 5°, and partly to ensure that the nitrous acid formed reacts as completely as possible with the aniline. The temperature must not be allowed to rise above 10°, otherwise appreciable decomposition of the diazonium compound to phenol will occur on the other hand, the temperature... [Pg.184]

Meanwhile, during the cooling of the cuprous chloride solution, prepare a solution of benzenediazonium chloride by dissolving 20 ml. (20-5 g.) of aniline in a mixture of 50 ml. of concentrated hydrochloric acid and 50 ml. of water, and after cooling to 5°, adding slowly a solution of 17 g. of sodium nitrite in 40 ml. of water. Observe carefully the general conditions for diazotisation given in the preparation of iodobenzene (p. 184). [Pg.190]

A) Diazotisation of Anthranilic Acid, Dissolve 20 g. of anthranilic acid in a solution of 7 5 g. of anhydrous sodium carbonate in 200 ml. of water contained in a 400 ml. beaker, (The mixture may be warmed very gently with stirring to obtain a solution more rapidly, and then cooled.) Add slowly 12 g. of sodium nitrite and cool the stirred solution below 10 , Pour this cold solution slowly on to a vigorously stirred mixture of 40 ml, of concentrated hydrochloric acid and 120 g. of crushed ice in a 600 ml. beaker. [Pg.200]

Add 20 g. of /)-bromoaniline to 20 ml. of water in a 250 ml. beaker, and warm the mixture until the amine melts. Now add 23 ml. of concentrated hydrochloric acid and without delay stir the mixture mechanically in an ice-water bath, so that a paste of fine /> bromo-aniline hydrochloride crystals separates. Maintain the temperature of the stirred mixture at about 5° whilst slowly adding from a dropping-funnel a solution of 8 5 g. of sodium nitrite in 20 ml. of water con tinue the stirring for 20 minutes after the complete addition of the nitrite. [Pg.201]

To prepare the hydrochloride, add about i g. of aminoazobenzene to 200 ml. of dilute hydrochloric acid and boil until nearly all the solid material has dissolved. Filter hot and allow to cool slowly. Aminoazobenzene hydrochloride separates as beautiful steel-blue crystals filter and dry. If a small quantity of the powdered hydrochloride is moistened with water and a few drops of ammonia added, the blue hydrochloride is converted back to the yellowish-brown base. [Pg.209]

Dissolve 4 5 ml. of aniline in a mixture of 10 ml. of concentrated hydrochloric acid and 20 ml. of water cool the solution to 5°, and diazotise by the addition of 4 g. of sodium nitrite dissolved in 20 ml, of water, observing the usual precautions given on page 181. Dissolve 7 g. of 2-naphthol in 60 ml. of 10% sodium hydroxide solution contained in a 200 ml. beaker, and cool this solution to 5 by external cooling, aided by the direct addition of about 20-30 g. of crushed ice. Now add the diazotised solution very slowly to the naphthol solution, keeping the latter well stirred meanwhile the mixed solutions immediately develop a deep red colour, and the benzeneazonaphthol should... [Pg.210]

Dissolve 2 g. of anhydrous sodium carbonate in 50 ml. of water contained in a 400 ml. beaker and add 7 g. of finely powdered crystalline sulphanilic acid (2H2O), warming the mixture gently in order to obtain a clear solution. Add a solution of 2 2 g. of sodium nitrite in 10 ml. of water and then cool the mixture in ice-water until the temperature has fallen to 5°. Now add very slowly (drop by drop) with continual stirring a solution of 8 ml. of concentrated hydrochloric acid in 15 ml. of water do not allow the temperature to rise above 10°. When all the acid has been added, allow the solution to stand in ice-water for 15 minutes to ensure complete diazotisation during this period fine crystals of the internal salt separate from the pink solution. Dissolve 4 ml. of dimethylaniline in a mixture of 4 ml. of concentrated hydrochloric acid and 10 ml. of water, cool the solution in ice-water, and add it slowly to the cold well-stirred diazo solution a pale red coloration is developed. Allow the mixture to stand for 5 minutes and then add slowly with stirring aqueous... [Pg.214]

Reagent A. Dissolve 0 5 g. of the powdered dinitropheny I hydrazine in a mixture of 80 ml. of concentrated hydrochloric acid and 100 ml. of distilled water by gently heating the mixture on a water-bath. Cool the solution and add 120 ml. of water. If necessary, filter the pale yellow solution. [Pg.263]

During this period hydrogen chloride continues to be liberally evolved, and the product darkens considerably in colour. Now pour the product cautiously into 500 ml. of dilute hydrochloric acid and 100 g. of chipped ice in a separating-funnel, and shake the mixture thoroughly this operation removes the dark colour, and the toluene solution becomes yellow. Run off the lower acid layer, and extract the toluene three times with water. Finally dry the toluene solution over calcium chloride. [Pg.290]

Gently warm a mixture of 32 g. (32 ml.) of ethyl acetoacetate and 10 g. of aldehyde-ammonia in a 400 ml. beaker by direct heating on a gauze, stirring the mixture carefully with a thermometer. As soon as the reaction starts, remove the heating, and replace it when the reaction slackens, but do not allow the temperature of the mixture to exceed 100-no the reaction is rapidly completed. Add to the mixture about twice its volume of 2A -hydrochloric acid, and stir the mass until the deposit either becomes solid or forms a thick paste, according to the quality of the aldehyde-ammonia employed. Decant the aqueous acid layer, repeat the extraction of the deposit with more acid, and again decant the acid, or filter off the deposit if it is solid. Transfer the deposit to a conical flask and recrystallise it twice from ethanol (or methylated spirit) diluted with an equal volume of water. The i,4-dihydro-collidine-3,5-dicarboxylic diethyl ester (I) is obtained as colourless crystals, m.p. 130-131°. Yield 12 5 g,... [Pg.296]

The mixed amines are dissolved in hydrochloric acid and zinc chloride solution added. The quinoline chlorozincate, (C H7N)2,HtZnCl, crystallises out, being almost insoluble in water, while the aniline chlorozincate remains in solution. The quinoline chlorozincate is then filtered off and decomposed by alkalis, and the liberated quinoline extracted with ether or steam-distilled. [Pg.298]


See other pages where Water hydrochloric acid and is mentioned: [Pg.659]    [Pg.113]    [Pg.90]    [Pg.135]    [Pg.431]    [Pg.787]    [Pg.136]    [Pg.382]    [Pg.199]    [Pg.9]    [Pg.659]    [Pg.113]    [Pg.90]    [Pg.135]    [Pg.431]    [Pg.787]    [Pg.136]    [Pg.382]    [Pg.199]    [Pg.9]    [Pg.48]    [Pg.317]    [Pg.172]    [Pg.179]    [Pg.189]    [Pg.194]    [Pg.205]    [Pg.216]    [Pg.224]    [Pg.259]    [Pg.299]    [Pg.313]   
See also in sourсe #XX -- [ Pg.534 ]

See also in sourсe #XX -- [ Pg.442 ]




SEARCH



Acidity, and water

Acids hydrochloric acid

Equilibrium between ferric chloride, hydrochloric acid, and water

Hydrochloric

Hydrochloric acid

Water acids and

© 2024 chempedia.info