Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vulcanization Efficiency

Butyl rubber, containing only 0.5-2.5% isoprene units, is not efficiently crosslinked by sulfur. Chlorination of butyl rubber is carried out to improve its vulcanization efficiency by allowing a combination of sulfur and metal oxide vulcanizations. [Pg.749]

Hydrogen atoms can be abstracted from arylated methylene groups, but hydrogen atoms may also be abstracted from a-methylene groups of the adipate moieties. Though they are usually sufficient, vulcanization efficiencies can be increased by the incorporation of urea structures into the polymer chain (Bork and Roush, 1964). [Pg.375]

In fact, the physical properties obtained depend on the types of cross-hnk formed and the extent of main-chain modification by side reactions. This is usually being largely determined by the vulcanization system, although cure time and temperature also have an important effect. Generally, there are three types of typical sulfur vulcanization systems, namely, conventional vulcanization, efficient vulcanization and semi-efficient vulcanization. [Pg.490]

Clay minerals, in NR, have a remarkable effect on (i) rheological properties, (ii) vulcanization efficiency, (hi) barrier properties, (iv) mechanical reinforcement, (iv) thermal properties, (v) degradation properties, (vi) flame resistance. [Pg.77]

MBSS is sometimes used as a primary accelerator by the tire industry, especially if its extra sulfur is needed for vulcanization efficiency. However, MBSS does have an environmental problem from excessive nitrosamine generation during cure, which has restricted its use. [Pg.287]

There are three generally recognized classifications for sulfur vulcanization conventional, efficient (EV) cures, and semiefficient (semi-EV) cures. These differ primarily ki the type of sulfur cross-links that form, which ki turn significantly influences the vulcanizate properties (Eig. 8) (21). The term efficient refers to the number of sulfur atoms per cross-link an efficiency factor (E) has been proposed (20). [Pg.238]

Other Uses. Other uses include intermediate chemical products. Overall, these uses account for 15—20% of sulfur consumption, largely in the form of sulfuric acid but also some elemental sulfur that is used directly, as in mbber vulcanization. Sulfur is also converted to sulfur trioxide and thiosulfate for use in improving the efficiency of electrostatic precipitators and limestone/lime wet flue-gas desulfurization systems at power stations (68). These miscellaneous uses, especially those involving sulfuric acid, are intimately associated with practically all elements of the industrial and chemical complexes worldwide. [Pg.126]

New efficient vulcanization systems have been introduced in the market based on quaternary ammonium salts initially developed in Italy (29—33) and later adopted in Japan (34) to vulcanize epoxy/carboxyl cure sites. They have been found effective in chlorine containing ACM dual cure site with carboxyl monomer (43). This accelerator system together with a retarder (or scorch inhibitor) based on stearic acid (43) and/or guanidine (29—33) can eliminate post-curing. More recently (47,48), in the United States a proprietary vulcanization package based on zinc diethyldithiocarbamate [14324-55-1]... [Pg.477]

The Goodyear vulcanization process takes hours or even days to be produced. Accelerators can be added to reduce the vulcanization time. Accelerators are derived from aniline and other amines, and the most efficient are the mercaptoben-zothiazoles, guanidines, dithiocarbamates, and thiurams (Fig. 32). Sulphenamides can also be used as accelerators for rubber vulcanization. A major change in the sulphur vulcanization was the substitution of lead oxide by zinc oxide. Zinc oxide is an activator of the accelerator system, and the amount generally added in rubber formulations is 3 to 5 phr. Fatty acids (mainly stearic acid) are also added to avoid low curing rates. Today, the cross-linking of any unsaturated rubber can be accomplished in minutes by heating rubber with sulphur, zinc oxide, a fatty acid and the appropriate accelerator. [Pg.638]

Po[yamine disulphides do not inhibit peroxide vulcanization of polyethylene, are stable in air up to 300-350°C, exhibit good compatibility and show no sweating out from the polyethylene mass. Table 8 gives the comparison between the efficiency of polyamine disulphides as thermostabilizers of cured polyethylene. [Pg.90]

Of the polymers that can be cross-linked, the cross-link efficiency varies considerably. In general the relative efficiency of peroxides vulcanization of polymers [50,51] follows as ... [Pg.439]

The application of surface treatments to mbbers should produce improved wettability, creation of polar moieties able to react with the adhesive, cracks and heterogeneities should be formed to facilitate the mechanical interlocking with the adhesive, and an efficient removal of antiadherend moieties (zinc stearate, paraffin wax, and processing oils) have to be reached. Several types of surface preparation involving solvent wiping, mechanical and chemical treatments, and primers have been proposed to improve the adhesion of vulcanized SBR soles. However, chlorination with solutions of trichloroisocyanuric acid (TCI) in different solvents is by far the most common surface preparation for mbbers. [Pg.762]

While free radical attack in step (i) is by no means confined to carbon atom 4, the products obtained in the reactions involving the lower polyisoprenes indicate that this process is the dominant one. Likewise in step (ii) sulfur may frequently add at carbon atom 4 rather than at atom 2. Addition in the manner shown is indicated, however, by infrared spectra, which reveal the formation of —CH=CH— groups during vulcanization. The scheme accounts also for the observed constancy of the C/H ratio during vulcanization and for the relatively low efficiency of utilization of sulfur in the formation of cross-linkages in the absence of accelerators. A preponderance of the sulfur is involved in addition without formation of cross-linkages a considerable fraction of the thus-combined sulfur may occur in five- and six-membered heterocyclic rings formed by the mechanisms indicated. [Pg.456]

In the first membrane-type fuel cells, the dispersed platinum catalyst was pure metal because of its large consumption. Smaller consumption and a much more efficient utilization of the platinum catalyst were attained by depositing the metal on a highly disperse carbon carrier. The best results were attained by using Vulcan XC-72 furnace... [Pg.364]

Similarly, Pd, Ag, and Pd-Ag nanoclusters on alumina have been prepared by the polyol method [230]. Dend-rimer encapsulated metal nanoclusters can be obtained by the thermal degradation of the organic dendrimers [368]. If salts of different metals are reduced one after the other in the presence of a support, core-shell type metallic particles are produced. In this case the presence of the support is vital for the success of the preparation. For example, the stepwise reduction of Cu and Pt salts in the presence of a conductive carbon support (Vulcan XC 72) generates copper nanoparticles (6-8 nm) that are coated with smaller particles of Pt (1-2 nm). This system has been found to be a powerful electrocatalyst which exhibits improved CO tolerance combined with high electrocatalytic efficiency. For details see Section 3.7 [53,369]. [Pg.36]

In this section, we present results of potentiodynamic DBMS measurements on the continuous (bulk) oxidation of formic acid, formaldehyde and methanol on a Pt/ Vulcan catalyst, and compare these results with the adsorbate stripping data in Section 13.3.1. We quantitatively evaluate the partial oxidation currents, product yields, and current efficiencies for the respective products (CO2 and the incomplete oxidation products). In the presentation, the order of the reactants follows the increasing complexity of the oxidation reaction, with formic acid oxidation discussed first (one reaction product, CO2), followed by formaldehyde oxidation (two reaction products) and methanol oxidation (three reaction products). [Pg.425]

Figure 13.4 Current efficiency plots for the potentiodynamic electro-oxidation of formaldehyde (a) and methanol (h positive-going scan c negative-going scan) on a Pt/Vulcan thin-fihn electrode (data from Fig. 13.3a, h) dashed lines, current efficiency for CO2 formation dash-dotted fines, current efficiency for HCOOH formation dotted fines, current efficiency for HCHO formation. Figure 13.4 Current efficiency plots for the potentiodynamic electro-oxidation of formaldehyde (a) and methanol (h positive-going scan c negative-going scan) on a Pt/Vulcan thin-fihn electrode (data from Fig. 13.3a, h) dashed lines, current efficiency for CO2 formation dash-dotted fines, current efficiency for HCOOH formation dotted fines, current efficiency for HCHO formation.
Figure 13.6 Potential-step electro-oxidation of formaldehyde on a Pt/Vulcan thin-film electrode (7 p,gpt cm, geometric area 0.28 cm ) in 0.5 M H2SO4 solution containing 0.1 M HCHO upon stepping the potential from 0.16 to 0.6 V (electrolyte flow rate 5 pL at room temperature). (a) Solid line, faradaic current transients dashed line, partial current for HCHO oxidation to CO2 dotted line, difference between the net faradaic current and that for CO2 formation, (b) Solid line, m/z = 44 ion current transients gray line potential-step oxidation of pre-adsorbed CO derived upon HCHO adsorption at 0.16 V, in HCHO-free sulfuric acid solution, (c) Current efficiency transients for CO2 formation (dashed line) and formic acid formation (dotted line). Figure 13.6 Potential-step electro-oxidation of formaldehyde on a Pt/Vulcan thin-film electrode (7 p,gpt cm, geometric area 0.28 cm ) in 0.5 M H2SO4 solution containing 0.1 M HCHO upon stepping the potential from 0.16 to 0.6 V (electrolyte flow rate 5 pL at room temperature). (a) Solid line, faradaic current transients dashed line, partial current for HCHO oxidation to CO2 dotted line, difference between the net faradaic current and that for CO2 formation, (b) Solid line, m/z = 44 ion current transients gray line potential-step oxidation of pre-adsorbed CO derived upon HCHO adsorption at 0.16 V, in HCHO-free sulfuric acid solution, (c) Current efficiency transients for CO2 formation (dashed line) and formic acid formation (dotted line).
Polychloroprene rubbers are not efficiently vulcanized by sulfur. The chlorine atoms deactivate the double bonds toward reaction with sulfur. Vulcanization is achieved by heating with zinc and magnesium oxides. Crosslinking involves the loss of... [Pg.27]

The comparative estimation of ZnCFO efficiency depending on type of vulcanization system is given. [Pg.14]


See other pages where Vulcanization Efficiency is mentioned: [Pg.540]    [Pg.78]    [Pg.82]    [Pg.902]    [Pg.540]    [Pg.78]    [Pg.82]    [Pg.902]    [Pg.247]    [Pg.251]    [Pg.269]    [Pg.269]    [Pg.1114]    [Pg.1115]    [Pg.300]    [Pg.419]    [Pg.498]    [Pg.891]    [Pg.923]    [Pg.321]    [Pg.548]    [Pg.413]    [Pg.27]    [Pg.535]    [Pg.299]   


SEARCH



Efficient vulcanization

Vulcan

Vulcanization

Vulcanize

Vulcanized

Vulcanizing

© 2024 chempedia.info