Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volatile fatty acids aroma

Flavor is one of the major characteristics that restricts the use of legume flours and proteins in foods. Processing of soybeans, peas and other legumes often results in a wide variety of volatile compounds that contribute flavor notes, such as grassy, beany and rancid flavors. Many of the objectionable flavors come from oxidative deterioration of the unsaturated lipids. The lipoxygenase-catalyzed conversion of unsaturated fatty acids to hydroperoxides, followed by their degradation to volatile and non-volatile compounds, has been identified as one of the important sources of flavor and aroma components of fruits and vegetables. An enzyme-active system, such as raw pea flour, may have most of the necessary enzymes to produce short chain carbonyl compounds. [Pg.32]

Homstein and Crowe 18) and others (79-27) suggested that, while the fat portion of muscle foods from different species contributes to the unique flavor that characterizes the meat from these species, the lean portion of meat contributes to the basic meaty flavor thought to be identical in beef, pork, and lamb. The major differences in flavor between pork and lamb result from differences in a number of short chain unsaturated fatty acids that are not present in beef. Even though more than 600 volatile compounds have been identified from cooked beef, not one single compound has been identified to date that can be attributed to the aroma of "cooked beef." Therefore, a thorough understanding of the effect of storage on beef flavor and on lipid volatile production would be helpful to maintain or expand that portion of the beef market. [Pg.85]

Products of the LOX pathway or compounds formed by autoxidation of fatty acids (Scheme 7.2) are also important for leek aroma [31, 163]. Volatile compounds of the LOX pathway are not pronounced in the aroma profile of freshly cut leeks owing to a high content of thiosulfinates and thiopropanal-S-oxide [30]. In processed leeks that have been stored for a long time (frozen storage), however, these aliphatic aldehydes and alcohols have a greater impact on the aroma profile owing to volatilisation and transformations of sulfur compounds [31, 165]. The most important volatiles produced from fatty acids and perceived by GC-O of raw or cooked leeks are pentanal, hexanal, decanal and l-octen-3-ol (Table 7.5) [31, 35, 148, 163, 164]. [Pg.169]

Raw potato possesses little aroma. Approximately 50 compounds have been reported to contribute to raw potato aroma. Raw potatoes have a high content of LOX, which catalyses the oxidation of unsaturated fatty acids into volatile degradation products (Scheme 7.2) [187]. These reactions occur as the cells are disrupted, e.g. during peeling or cutting. Freshly cut, raw potatoes contain ( ,Z)-2,4-decadienal, ( ,Z)-2,6-nonadienal, ( )-2-octenal and hexanal, which are all products of LOX-initiated reactions of unsaturated fatty acids [188,189]. It is reported that two compounds represent typical potato aroma in raw potato methional and ( ,Z)-2,6-nonadienal [189]. Other important volatiles in raw potatoes produced via the LOX pathway are l-penten-3-one, heptanal, 2-pen-tyl furan, 1-pentanol and ( , )-2,4-heptadienal [189]. Pyrazines such as 3-iso-propyl-2-methoxypyrazine could be responsible for the earthy aroma of potato [35]. Some of the most important character-impact compounds of raw potatoes are summarised in Table 7.8. Aroma compounds from cooked, fried and baked potatoes have previously been reviewed [35]. [Pg.173]

Similarly, in potato Solanum tuberosum), silencing LOX-Hl caused a severe decrease in the amount of volatiles produced by the leaves and in the intensity of their aroma, while the depletion of HPL increased the content of C5 (2-pente-nal, pentanal, l-penten-3-ol and ds-2-pentenol) volatiles [27]. These examples clearly demonstrate that the fatty acid metabolism involved in aroma biosynthesis is not as simple as initially supposed. [Pg.620]

An extensive list of volatile compounds in apples and other fruits was included in a review by Nursten (222). White (223) reported that the principal components of the aroma of apples were alcohols (92% ) methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-l-propa-nol, 2-methyl-l-butanol, and 1-hexanol. The other constituents included 6% carbonyl compounds and 2% esters. Later, MacGregor et al. (224) tentatively identified 30 volatile components of McIntosh apple juice including four aldehydes, one ketone, 11 alcohols, 10 esters, and four fatty acids. The major organic volatiles in several different extractants of Delicious apple essence were identified and quantitatively estimated by Schultz et al. (225). They reported from sensory tests that low molecular weight alcohols contributed little to apple aroma. Flath et al. (226) identified... [Pg.46]

Jennings et al (228) fractionated an extract from Bartlett pears into 32 volatile components of which five were found to contribute significantly to the characteristic pear aroma. Later studies indicated that esters of trans-2 cis-4 decadienoic acid and hexyl acetate were significant components of the Bartlett pear aroma (229, 230). More recently, numerous volatiles of Bartlett pears were separated and identified including esters of methyl, ethyl, propyl, butyl, and hexyl alcohols, and Cio to Ci8 fatty acids (231, 232). [Pg.47]

To avoid interferences during gas chromatography, the aroma distillate has to be separated into neutral/basic and acidic fractions by treatment with sodium bicarbonate, if higher amounts of volatile acids, such as acetic acid or butanoic acid, are present Both fractions are then concentrated to the same volume and separately analyzed by gas chromatography olfactometry (GCO). To separate the acidic volatiles a free fatty acid stationary gc phase (FFAP) is very appropriate. [Pg.405]

Lipid decomposition volatiles. Reactions of sugar and amino acids give rise to odor profiles that are, at best, common to all cooked or roasted meats. The water soluble materials extracted from chicken, pork, or beef give reasonably similar meat flavor. To develop a species specific aroma one needs to study the lipid fraction and the volatiles produced from those lipids. The work of Hornstein and Crowe (10) reported that the free fatty acids and carbonyls generated by heating will establish the specific species flavor profiles. [Pg.15]

Other investigators (7-9) have identified a large number of carbonyls from heated fat. The remaining meat aroma components derived by heating lipids are esters, lactones, alkan-2-ones (methyl ketones), benzenoids and other alkylfurans. Several investigators have analyzed volatile compounds formed during thermal degradation of fatty acids (10-12). [Pg.422]

Milk fat contains a number of different lipids, but is predominately made up of triacylglycerols (TAG) (98%). The remaining lipids are diacylglycerols (DAG), monoacylglycerols (MAG), phospholipids, free fatty acids (FFA) and sterols. Milk fat contains over 250 different fatty acids, but 15 of these make up approximately 95% of the total (Banks, 1991) the most important are shown in Table 19.1. The unique aspect of bovine, ovine and caprine milk fat, in comparison to vegetable oils, is the presence of high levels of short-chain volatile FFAs (SCFFA), which have a major impact on the flavor/aroma of dairy products. Most cheeses are produced from either bovine, ovine or caprine milk and the differences of their FFA profile are responsible for the characteristic flavor of cheeses produced from such milks (Ha and Lindsay, 1991). [Pg.675]

The flavour threshold for acetic acid depends on wine type and style, and ranges from 0.4 to 1.1 g/L (Dubois 1994). At threshold concentration it provides warmth to the palate and, as the concentration increases, it imparts a sourness/sharpness to the palate and a vinegary odour at higher concentration. As the fatty chain length increases, volatility decreases and the odour changes from sour to rancid and cheese (Francis and Newton 2005). Sensory studies show that hexanoic, octanoic, and decanoic acids can contribute to the aroma of some white wines (Smyth et al. 2005). The branched-chain fatty acids can also contribute to the fermentation bouquet of wine, with the concentration of 2-methylpropanoic acid typically exceeding its odour threshold (Francis and Newton 2005). [Pg.336]

Esters, not fusel alcohols, actually comprise the most abundant group of volatile compounds in wines Rapp (26) has listed over 300 esters and lactones found in grapes, musts and wines. The esters are largely responsible for the fmity aromas associated with wine (52), especially young wine (27). Of the esters, ethyl acetate predominates by some two orders of magnitude (see 40) however, the low aroma thresholds of a number of the fatty acid ethyl esters makes them of sensory import nonetheless (27). [Pg.71]

Some volatile aldehydes formed by autoxidation of unsaturated fatty acids are listed in Table 1. The aromas of aldehydes are generally described as green, painty, metallic, beany, and rancid, and they are often responsible for the undesirable flavors in fats and oils. Hexanal has long been used as an index of oxidative deterioration in foods. Some aldehydes, particularly the unsaturated aldehydes, are very potent flavor compounds. Table 2 fists aroma characteristics of some common aldehydes found in fats and oils (8). [Pg.430]

The most important precursors for lipid oxidation are unsaturated fats and fatty acids like oleic (18 1), linoleic (18 2), linolenic (18 3) and arachidonic acid (20 4). The more unsaturated ones are more prone to oxidation. Lipid peroxidation and the subsequent reactions generate a variety of volatile compounds, many of which are odour-active, especially the aldehydes. That is why lipid oxidation is also a major mechanism for thermal aroma generation and contributes in a great measure to the flavour of fat-containing food. Lipid oxidation also takes place under storage conditions and excessive peroxidation is responsible for negative aroma changes of food like rancidity, warmed-over flavour, cardboard odour and metallic off-notes. [Pg.283]

Traditional fermentation using microbial activity is commonly used for the production of nonvolatile flavor compounds such as acidulants, amino acids, and nucleotides. The formation of volatile flavor compounds via microbial fermentation on an industrial scale is still in its infancy. Although more than 100 aroma compounds may be generated microbially, only a few of them are produced on an industrial scale. The reason is probably due to the transformation efficiency, cost of the processes used, and our ignorance to their biosynthetic pathways. Nevertheless, the exploitation of microbial production of food flavors has proved to be successful in some cases. For example, the production of y-decalactone by microbial biosynthetic pathways lead to a price decrease from 20,000/kg to l,200/kg U.S. Generally, the production of lactone could be performed from a precursor of hydroxy fatty acids, followed by p-oxidation from yeast bioconversion (Benedetti et al., 2001). Most of the hydroxy fatty acids are found in very small amounts in natural sources, and the only inexpensive natural precursor is ricinoleic acid, the major fatty acid of castor oil. Due to the few natural sources of these fatty acid precursors, the most common processes have been developed from fatty acids by microbial biotransformation (Hou, 1995). Another way to obtain hydroxy fatty acid is from the action of LOX. However, there has been only limited research on using LOX to produce lactone (Gill and Valivety, 1997). [Pg.247]


See other pages where Volatile fatty acids aroma is mentioned: [Pg.325]    [Pg.364]    [Pg.370]    [Pg.333]    [Pg.145]    [Pg.56]    [Pg.415]    [Pg.124]    [Pg.175]    [Pg.193]    [Pg.137]    [Pg.176]    [Pg.224]    [Pg.226]    [Pg.226]    [Pg.242]    [Pg.243]    [Pg.262]    [Pg.279]    [Pg.620]    [Pg.196]    [Pg.219]    [Pg.226]    [Pg.442]    [Pg.153]    [Pg.119]    [Pg.61]    [Pg.63]    [Pg.1659]    [Pg.2040]    [Pg.511]    [Pg.249]    [Pg.114]   
See also in sourсe #XX -- [ Pg.335 , Pg.336 , Pg.337 , Pg.338 ]




SEARCH



Acids volatile acid

Aroma acids

Aroma volatiles

Volatile acidity

Volatile acids

Volatile fatty acids

© 2024 chempedia.info