Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin steroid hormone action

VITAMIN Be IS IMPORTANT IN AMINO ACID GLYCOGEN METABOLISM IN STEROID HORMONE ACTION... [Pg.491]

Pyridoxal phosphate is a coenzyme for many enzymes involved in amino acid metabolism, especially in transamination and decarboxylation. It is also the cofactor of glycogen phosphorylase, where the phosphate group is catalytically important. In addition, vitamin Bg is important in steroid hormone action where it removes the hormone-receptor complex from DNA binding, terminating the action of the hormones. In vitamin Bg deficiency, this results in increased sensitivity to the actions of low concentrations of estrogens, androgens, cortisol, and vitamin D. [Pg.491]

Although clinical deficiency disease is rare, there is evidence that a significant proportion of the population have marginal vitamin Bg status. Moderate deficiency results in abnormalities of tryptophan and methionine metabolism. Increased sensitivity to steroid hormone action may be important in the development of hormone-dependent cancer of the breast, uterus, and prostate, and vitamin Bg status may affect the prognosis. [Pg.491]

Vitamin Be has a central role in the metabolism of amino acids in transaminase reactions (and hence the interconversion and catabolism of amino acids and the synthesis of nonessential amino acids), in decarboxylation to yield biologically active amines, and in a variety of elimination and replacement reactions. It is also the cofactor for glycogen phosphorylase and a variety of other enzymes. In addition, pyridoxal phosphate, the metabolically active vitamer, has a role in the modulation of steroid hormone action and the regulation of gene expression. [Pg.232]

A most important function of vitamin A is in the control of cell differentiation and mrnover. PsA-trans-retinoic acid and 9-cw-retinoic acid (Figure 45-1) regulate growth, development, and tissue differentiation they have different actions in different tissues. Like the steroid hormones and vitamin D, retinoic acid binds to nuclear receptors that bind to response elements of DNA and regulate the transcription of specific genes. There are two families of nuclear retinoid receptors the retinoic acid receptors (RARs) bind all-rrijw-retinoic acid or 9-c -retinoic acid, and the retinoid X receptors (RXRs) bind 9-cw-retinoic acid. [Pg.483]

Retinoids are a family of naturally occurring and synthetic analogues of vitamin A. The skin of subjects deficient in vitamin A becomes hyperplastic and keratotic (phrynoderma, or toad skin). While natural vitamin A is occasionally employed therapeutically, synthetic retinoids are more effective and represent a major advance in dermatological pharmacotherapy. Retinoids have myriad effects on cellular differentiation and proliferation it is likely that nuclear retinoic acid receptors mediate these effects by activating gene expression in a manner analogous to receptors for steroid hormones and thyroid hormones. Despite a common mechanism of action, however, retinoids vary widely in their physiological effects. [Pg.487]

A model of thyroid hormone action is depicted in Figure 38-4, which shows the free forms of thyroid hormones, T4 and T3, dissociated from thyroid-binding proteins, entering the cell by active transport. Within the cell, T4 is converted to T3 by 5 -deiodinase, and the T3 enters the nucleus, where T3 binds to a specific T3 receptor protein, a member of the c-erb oncogene family. (This family also includes the steroid hormone receptors and receptors for vitamins A and D.) The T3 receptor exists in two forms, a and B. Differing concentrations of receptor forms in different tissues may account for variations in T3 effect on different tissues. [Pg.859]

Effect of vitamin D on the intestine 1,25-diOH D3 stimulates intestinal absorption of calcium and phosphate. 1,25-diOH D3 enters the intestinal cell and binds to a cytosolic receptor. The 1,25-diOH D3-receptor complex then moves to the nucleus where it selectively interacts with the cellular DNA. As a result, calcium uptake is enhanced by an increased synthesis of a specific calcium-binding protein. Thus, the mechanism of action of 1,25-diOH D3 is typical of steroid hormones (see p. 238). [Pg.386]

Niacin and pantothenic acid synergistic wilh ACTH in steroid hormone synthesis Vitamin D antagonized directly by AC-TH via cortisol action... [Pg.786]

Dietary vitamin A is stored in the liver and secreted into the bloodstream when needed. The circulating retinol is taken up by target cells and oxidized in part to retinoic acid, which induces the synthesis of proteins through the direct control of gene expression. This type of action—gene activation—establishes vitamin A (in the form of its metabolite, retinoic acid) as a hormone, similar to the steroid hormones and the thyroid hormone. [Pg.322]

Vitamin D can be considered both a hormone and a vitamin. Its mode of action is like that of other steroid hormones, and it is synthesized in the body. It can be given in the diet (e.g., in supplemented milk) and would then be called a vitamin. [Pg.900]

David Bender is a Senior Lecturer in Biochemistry at University College London. He has written seventeen books, as well as numerous chapters and reviews, on various aspects of nutrition and nutritional biochemistry. His research has focused on the interactions between vitamin Bg and estrogens, which has led to the elucidation of the role of vitamin Be in terminating the actions of steroid hormones. He is currently the Editor-in-Chief of Nutrition Research Reviews. [Pg.489]

Re.seaa-h since the mid-1980s has taken va.si strides in determining the molecular mechanism of action of vitamin A. It appears that the vitamin exerts its biological function with respect to development, diffcrcnlialion. and metabolism like a steroid hormone. The biologically active species is believed to be retinoic acid. Two intracellular retinoic acid-binding proteins have been isolated. CRABP(I) and CRABPfll). The.se appear to have functions similar to those of the CRBPs. [Pg.872]

Conclusive evidence that a species of cytochrome P-450 was involved in the hydroxylation was presented by Okuda et al., who showed that the photochemical action spectrum for reversal of the carbon monoxide inhibition of 26-hydroxylation of 5)8-cholestane-3a,7a,12a-triol in rat liver exhibited a maximum at 450 nm [134]. Pedersen et al. [135] and Sato et al. [136] reported simultaneously that small amounts of cytochrome P-450 could be solubilized from the inner membranes of rat liver mitochondria that was active towards cholesterol as well as 5)8-cholestane-3a,7a,12a-triol in the presence of ferredoxin, ferredoxin reductase and NADPH. The mechanism of hydroxylation is thus the same as that operative in the biosynthesis of steroid hormones in the adrenals and in the la-hydroxylation of 25-hydroxyvitamin D in the kidney (Fig. 8). The liver mitochondrial cytochrome P-450 was not active in the presence of microsomal NADPH-cytochrome P-450 reductase [135,136]. Ferredoxin reductase as well as ferredoxin were active regardless of whether they were isolated from rat liver mitochondria or bovine adrenal mitochondria [133]. The partially purified cytochrome P-450 had a carbon monoxide difference spectrum similar to that of microsomal cytochrome P-450 from liver microsomes and adrenal mitochondria. In the work by Pedersen et al. [133], the concentration of mitochondrial cytochrome P-450 in rat liver mitochondria from untreated rats was calculated to be only about 0.1 nmole/mg protein. Treatment of rats with phenobarbital increased the specific content of cytochrome P-450 in the mitochondria more than 2-fold, without significant increase in the 26-hydroxylase activity. The carbon monoxide spectrum of the reduced cytochrome P-450 solubilized from liver mitochondria of phenobarbital-treated rats exhibited a spectral shift of about 2 nm as compared to the corresponding spectrum obtained in analysis of preparations from untreated rats. This was taken as evidence that more than one species of cytochrome P-450 was present in the preparation. It was later shown by Pedersen et al. [137] and Bjbrkhem et al. [138] that the preparation was also able to catalyse 25-hydroxylation of vitamin D3 and that different enzymes are involved in... [Pg.250]

Calcium homeostasis is primarily achieved by the action of a number of hormones on calcium fluxes across the intestinal and renal tubular epithelium, as well as to and from bone (Arnaud 1978). Of particular importance are the respective cellular actions of the steroid hormone 1,25-dihy-droxyvitamin D3 (1,25 (OH)2D3), the biologically active metabolite of vitamin D3 (see... [Pg.606]


See other pages where Vitamin steroid hormone action is mentioned: [Pg.847]    [Pg.4]    [Pg.271]    [Pg.171]    [Pg.269]    [Pg.852]    [Pg.18]    [Pg.746]    [Pg.362]    [Pg.191]    [Pg.1259]    [Pg.1263]    [Pg.221]    [Pg.122]    [Pg.254]    [Pg.286]    [Pg.77]    [Pg.261]    [Pg.77]    [Pg.261]    [Pg.77]    [Pg.261]    [Pg.225]    [Pg.182]    [Pg.346]    [Pg.350]    [Pg.628]    [Pg.325]    [Pg.329]    [Pg.1951]    [Pg.3]   


SEARCH



Action steroid hormones

Hormones vitamin

Hormones, steroidal

Steroid action

Steroids steroid hormones

Vitamins action

© 2024 chempedia.info