Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin distribution

Studies in vivo have also demonstrated that fat-soluble vitamins are solutes in bile salt micelles. For example, David and Ganguly [107] showed that when rats are fed retinyl acetate in ground nut oil, the vitamin distributes between the oil and micellar... [Pg.420]

The symptoms of abetalipoproteinemia include lipid malabsorption (and its accompanying symptoms, such as steatorrhea and vomiting), which can result in caloric deficiencies and weight loss. Because lipid-soluble vitamin distribution occurs through chylomicron circulation, signs and symptoms of deficiencies in the lipid-soluble vitamins may be seen in these patients. [Pg.592]

Table 15.9. Mineral and vitamin distribution as % in kernel fractions of wheat... Table 15.9. Mineral and vitamin distribution as % in kernel fractions of wheat...
They are widely distributed in vegetable lipids, and in the body fat of animals, though animals cannot synthesize them. They have vitamin E activity and can protect unsaturated lipids against oxidation. Four are found naturally ... [Pg.400]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

Manganese is widely distributed throughout the animal kingdom. It is an important trace element and may be essential for utilization of vitamin Bl. [Pg.60]

Vitha, M. F. Carr, P. W. A Laboratory Exercise in Statistical Analysis of Data, /. Chem. Educ. 1997, 74, 998-1000. Students determine the average weight of vitamin E pills using several different methods (one at a time, in sets of ten pills, and in sets of 100 pills). The data collected by the class are pooled together, plotted as histograms, and compared with results predicted by a normal distribution. The histograms and standard deviations for the pooled data also show the effect of sample size on the standard error of the mean. [Pg.98]

The bioflavanoids (vitamin P complex) are substances which maintain the small blood vessel walls. The substances are widely distributed among plants, eg, all citms fmits, and have been used medicinally to decrease capillary permeability and fragility. [Pg.386]

Absorption, Transport, and Excretion. The vitamin is absorbed through the mouth, the stomach, and predominantly through the distal portion of the small intestine, and hence, penetrates into the bloodstream. Ascorbic acid is widely distributed to the cells of the body and is mainly present in the white blood cells (leukocytes). The ascorbic acid concentration in these cells is about 150 times its concentration in the plasma (150,151). Dehydroascorbic acid is the main form in the red blood cells (erythrocytes). White blood cells are involved in the destmction of bacteria. [Pg.22]

Occurrence. The provitamins, precursors of the vitamin Ds, are distributed widely in nature, whereas the vitamins themselves are less prevalent. The amounts of provitamins D2 and D in various plants and animals are Hsted in Table 2. [Pg.126]

Preferably, high pressure Hquid chromatography (hplc) is used to separate the active pre- and cis-isomers of vitamin D from other isomers and allows their analysis by comparison with the chromatograph of a sample of pure reference i j -vitainin D, which is equiUbrated to a mixture of pre- and cis-isomers (82,84,85). This method is more sensitive and provides information on isomer distribution as well as the active pre- and cis-isomer content of a vitamin D sample. It is appHcable to most forms of vitamin D, including the more dilute formulations, ie, multivitamin preparations containing at least 1 lU/g (AOAC Methods 979.24 980.26 981.17 982.29 985.27) (82). The practical problem of isolation of the vitamin material from interfering and extraneous components is the limiting factor in the assay of low level formulations. [Pg.132]

Vitamin E was first described ia 1922 and the name was originally applied to a material found ia vegetable oils. This material was found to be essential for fertility ia tats. It was not until the early 1980s that symptoms of vitamin E deficiency ia humans were recognized. Early work on the natural distribution, isolation, and identification can be attributed to Evans, Butt, and Emerson (University of California) and MattiU and Olcott (University of Iowa). Subsequentiy a group of substances (Eig. 1), which fall iato either the family of tocopherols or tocotrienols, were found to act like vitamin E (1 4). The stmcture of a-tocopherol was determined by degradation studies ia 1938 (5). [Pg.144]

Pantothenic acid is found in extracts from nearly all plants, bacteria, and animals, and the name derives from the Greek pantos, meaning everywhere. It is required in the diet of all vertebrates, but some microorganisms produce it in the rumens of animals such as cattle and sheep. This vitamin is widely distributed in foods common to the human diet, and deficiencies are only observed in cases of severe malnutrition. The eminent German-born biochemist Fritz Lipmann was the first to show that a coenzyme was required to facilitate biological acetylation reactions. (The A in... [Pg.594]

L-Ascorbic acid, better known as vitamin C, has the simplest chemical structure of all the vitamins (Figure 18.30). It is widely distributed in the animal and plant kingdoms, and only a few vertebrates—humans and other primates, guinea pigs, fruit-eating bats, certain birds, and some fish (rainbow trout, carp, and Coho salmon, for example)—are unable to synthesize it. In all these organisms, the inability to synthesize ascorbic acid stems from a lack of a liver enzyme, L-gulono-y-lactone oxidase. [Pg.599]

The term vitamin E describes a family of eight antioxidants, four tocopherols, alpha (a), beta ((3), gamma (y) and delta (8), and four tocotrienols (also a, (3, y, and 8). a-Tocopherol is present in nature in only one form, RRR a-tocopherol. The chemical synthesis of a-tocopherol results in eight different forms (SRR, SSR, SRS, SSS, RSR, RRS, RSS, RRR), only one of which is RRR a-tocopherol. These forms differ in that they can be right (R) or left (S) at three different places in the a-tocopherol molecule. RRR a-tocopherol is the only form of vitamin E that is actively maintained in the human body and is therefore the form of vitamin E found in the largest quantities in the blood and tissue. A protein synthesized in the liver (a-TTP alpha-tocopherol transfer protein) preferentially selects the natural form of vitamin E (RRR a-tocopherol) for distribution to the tissues. However, the mechanisms for the regulation of vitamin E in tissues are not known... [Pg.1295]

The carotenoids are the most widely distributed group of pigments, occur naturally in large quantities, and are known for their structural diversity and various functions. The carotenoids constitnte a widespread class of natural pigments that occur in all three domains of life in the eubacteria, the archea, and the eucarya. Carotenoids are ubiquitous organic molecules, but they are not produced by the human body. They have been fonnd to be essential to human health based on the nutritional understanding of vitamin A (retinol) and (i-carotene. ... [Pg.51]

Both intact carotenoids and their apolar metabolites (retinyl esters) are secreted into the lymphatic system associated with CMs. In the blood circulation, CM particles undergo lipolysis, catalyzed by a lipoprotein lipase, resulting in the formation of CM remnants that are quickly taken up by the liver. In the liver, the remnant-associated carotenoid can be either (1) metabolized into vitamin A and other metabolites, (2) stored, (3) secreted with the bile, or (4) repackaged and released with VLDL particles. In the bloodstream, VLDLs are transformed to LDLs, and then HDLs by delipidation and the carotenoids associated with the lipoprotein particles are finally distributed to extrahepatic tissues (Figure 3.2.2). Time-course studies focusing on carotenoid appearances in different lipoprotein fractions after ingestion showed that CM carotenoid levels peak early (4 to 8 hr) whereas LDL and HDL carotenoid levels reach peaks later (16 to 24 hr). [Pg.163]

Injury (either physical or chemical) to the comeal endothelial cells has a marked efiect on occular function as these cells are responsible for maintaining the thickness and clarity of the cornea, yet they cannot be replaced if damaged. Immunohistochemical studies have revealed that enzymatic antioxidant defences, SOD, CAT and GSHPx, are similarly distributed in the corneal epithelium and endothelium (Rao etal., 1985 Attala et d., 1987, 1988). Other antioxidants include ascorbate, carotenoids and vitamin E (Fleath, 1962). [Pg.128]

The selection of an appropriate antioxidant depends on factors such as stability, toxicity, efficiency, odor, taste, compatibility with other ingredients, and distribution phenomena between the two phases. Antioxidants that give protection primarily in the aqueous phase include sodium metabisulfite, ascorbic acid, thioglycerol, and cysteine hydrochloride. Oil-soluble antioxidants include lecithin, propyl gal-late, ascorbyl palmitate, and butylated hydroxytoluene. Vitamin E has also been used, but its virtue as a natural antioxidant has been the subject of some controversy. [Pg.260]

It is important that there is equilibrium in the distribution of vitamin E between the plasma and erythrocytes in a living organism, with the content of vitamin in plasma about threefold higher [12]. The membrane structure is a critical factor for recognition of how much vitamin E the membrane may absorb. It means that notwithstanding how much vitamin was consumed, its content in the membrane is inherently limited. [Pg.852]


See other pages where Vitamin distribution is mentioned: [Pg.117]    [Pg.856]    [Pg.117]    [Pg.856]    [Pg.217]    [Pg.574]    [Pg.385]    [Pg.269]    [Pg.10]    [Pg.66]    [Pg.68]    [Pg.126]    [Pg.401]    [Pg.47]    [Pg.216]    [Pg.100]    [Pg.11]    [Pg.481]    [Pg.495]    [Pg.1]    [Pg.366]    [Pg.127]    [Pg.140]    [Pg.243]    [Pg.413]    [Pg.414]    [Pg.312]    [Pg.268]    [Pg.340]    [Pg.311]    [Pg.189]    [Pg.165]    [Pg.852]   
See also in sourсe #XX -- [ Pg.487 ]




SEARCH



© 2024 chempedia.info