Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin catalyst

Sorbitol is manufactured by the reduction of glucose in aqueous solution using hydrogen with a nickel catalyst. It is used in the manufacture of ascorbic acid (vitamin C), various surface active agents, foodstuffs, pharmaceuticals, cosmetics, dentifrices, adhesives, polyurethane foams, etc. [Pg.368]

Sorbitol is a sweetener often substituted for cane sugar because it is better tolerated by dia betics It IS also an intermediate in the commercial synthesis of vitamin C Sorbitol is prepared by high pressure hydrogenation of glucose over a nickel catalyst What is the structure (including stereochemistry) of sorbitoP... [Pg.658]

Chloroacetate esters are usually made by removing water from a mixture of chloroacetic acid and the corresponding alcohol. Reaction of alcohol with chloroacetyl chloride is an anhydrous process which Hberates HCl. Chloroacetic acid will react with olefins in the presence of a catalyst to yield chloroacetate esters. Dichloroacetic and trichloroacetic acid esters are also known. These esters are usehil in synthesis. They are more reactive than the parent acids. Ethyl chloroacetate can be converted to sodium fluoroacetate by reaction with potassium fluoride (see Fluorine compounds, organic). Both methyl and ethyl chloroacetate are used as agricultural and pharmaceutical intermediates, specialty solvents, flavors, and fragrances. Methyl chloroacetate and P ionone undergo a Dar2ens reaction to form an intermediate in the synthesis of Vitamin A. Reaction of methyl chloroacetate with ammonia produces chloroacetamide [79-07-2] C2H ClNO (53). [Pg.90]

Rearrangement of dehydrolinalool (4) using vanadate catalysts produces citral (5), an intermediate for Vitamin A synthesis as well as an important flavor and fragrance material (37). Isomerization of the dehydrolinalyl acetate (6) in the presence of copper salts in acetic acid followed by saponification of the acetate also gives citral (38,39). Further improvement in the catalyst system has greatly improved the yield to 85—90% (40,41). [Pg.411]

Most current industrial vitamin C production is based on the efficient second synthesis developed by Reichstein and Grbssner in 1934 (15). Various attempts to develop a superior, more economical L-ascorbic acid process have been reported since 1934. These approaches, which have met with htde success, ate summarized in Crawford s comprehensive review (46). Currently, all chemical syntheses of vitamin C involve modifications of the Reichstein and Grbssner approach (Fig. 5). In the first step, D-glucose (4) is catalytically (Ni-catalyst) hydrogenated to D-sorbitol (20). Oxidation to L-sotbose (21) occurs microhiologicaRy with The isolated L-sotbose is reacted with acetone and sulfuric acid to yield 2,3 4,6 diacetone-L-sorbose,... [Pg.14]

Antimony trichloride is used as a catalyst or as a component of catalysts to effect polymerisation of hydrocarbons and to chlorinate olefins. It is also used in hydrocracking of coal (qv) and heavy hydrocarbons (qv), as an analytic reagent for chloral, aromatic hydrocarbons, and vitamin A, and in the microscopic identification of dmgs. Liquid SbCl is used as a nonaqueous solvent. [Pg.204]

Chelation is a feature of much research on the development and mechanism of action of catalysts. For example, enzyme chemistry is aided by the study of reactions of simpler chelates that are models of enzyme reactions. Certain enzymes, coenzymes, and vitamins possess chelate stmctures that must be involved in the mechanism of their action. The activation of many enzymes by metal ions most likely involves chelation, probably bridging the enzyme and substrate through the metal atom. Enzyme inhibition may often result from the formation by the inhibitor of a chelate with a greater stabiUty constant than that of the substrate or the enzyme for a necessary metal ion. [Pg.393]

There are, however, technical limitations to substitution. Some materials are used in ways not easily filled by others. Platinum as a catalyst, liquid helium as a refrigerant, and silver on electrical contact areas cannot be replaced they perform a unique function - they are, so to speak, the vitamins of engineering materials. Others - a replacement for tungsten for lamp filaments, for example - would require the development of a whole new technology, and this can take many years. Finally,... [Pg.22]

A solution containing 26.3 mg of vitamin 6,2 in 15 ml of water was shaken with 78 mg of platinum oxide catalyst and hydrogen gas under substantially atmospheric pressure at 25 C for 20 hours. Hydrogen was absorbed. During the absorption of hydrogen the color of the solution changed from red to brown. The solution was separated from the catalyst and evaporated to dryness in vacuo. The residue was then dissolved in 1 ml of water and then diluted with about 6 ml of acetone. [Pg.783]

Ascorbic acid is photosensitive and unstable in aqueous solution at room temperature. During storage of foods, vitamin C is inactivated by oxygen. This process is accelerated by heat and the presence of catalysts. Ascorbic acid concentration in human organs is highest in adrenal and pituitary glands, eye lens, liver, spleen, and brain. Potatoes, citrus fruits, blade currants, sea buckthorns, acerola, rose hips, and red paprika peppers are among the most valuable vitamin C sources [1,2]. [Pg.1293]

Sodium dodecyl sulfate and hydrogen dodecyl sulfate have been used as catalysts in the denitrosation iV-nitroso-iV-methyl-p-toluenesulfonamide [138]. The kinetics of condensation of benzidine and p-anisidine with p-dimethylamino-benzaldehyde was studied by spectrophotometry in the presence of micelles of sodium dodecyl sulfate, with the result that the surfactant increases the rate of reaction [188]. The kinetics of reversible complexation of Ni(II) and Fe(III) with oxalatopentaaminecobalt(III) has been investigated in aqueous micellar medium of sodium dodecyl sulfate. The reaction occurs exclusively on the micellar surface [189]. Vitamin E reacts rapidly with the peroxidized linoleic acid present in linoleic acid in micellar sodium dodecyl sulfate solutions, whereas no significant reaction occurs in ethanol solution [190]. [Pg.275]

Vitamin is one of the most extraordinary and effective catalysts working in biological systems The application of natural as well as its cyanocobalamine... [Pg.69]

The presence of redox catalysts in the electrode coatings is not essential in the c s cited alx)ve because the entrapped redox species are of sufficient quantity to provide redox conductivity. However, the presence of an additional redox catalyst may be useful to support redox conductivity or when specific chemical redox catalysis is used. An excellent example of the latter is an analytical electrode for the low level detection of alkylating agents using a vitamin 8,2 epoxy polymer on basal plane pyrolytic graphite The preconcentration step involves irreversible oxidative addition of R-X to the Co complex (see Scheme 8, Sect. 4.4). The detection by reductive voltammetry, in a two electron step, releases R that can be protonated in the medium. Simultaneously the original Co complex is restored and the electrode can be re-used. Reproducible relations between preconcentration times as well as R-X concentrations in the test solutions and voltammetric peak currents were established. The detection limit for methyl iodide is in the submicromolar range. [Pg.76]

The pentagon stabilization has been found in a biochemical phenomenon [80], The hydrogen on the thiazolium ring 9 (Scheme 7) is easily ionized to afford the corresponding carbene 10, a key catalyst in enzymatic reactions for which thiamine (vitamin B-1,11) pyrophosphate is the cofactor. The pentagon stability is expected to contribute to this unusual deprotonation. A lone pair generated on the carbon atom in 10 can similarly delocalize through the vicinal C-N and C-S a bonds in a cyclic manner. [Pg.304]

Today it is estimated that some 90% of the chemicals used have, at some stage in their manufacture, come into contact with a catalyst. The range is truly broad from bulk chemicals such as acetic acid and ammonia to consumer products such as detergents and vitamins. Virtually all major bulk chemical and refining processes employ catalysts. The number of fine, speciality and pharmaceutical processes currently using catalysts is still relatively small by comparison, but a combination of economic and environmental factors is focusing much research on this area. The great... [Pg.85]

An intere.sting example in the context of waste minimization is the manufacture of the vitamin K intermediate, menadione. Traditionally it was produced by stoichiometric oxidation of 2-methylnaphthalene with chromium trioxide (Eqn. (8)), which generates 18 kg of solid, chromium containing waste per kg of menadione. Catalytic alternatives have been reported, but selectivities tend to be rather low owing to competing oxidation of the second aromatic ring (the. selectivity in the classical process is only 50-60%). The best results were obtained with a heteropolyanion as catalyst and O2 as the oxidant (Kozhevnikov, 1993). [Pg.37]

Similarly, 2,3,5-trimethyl-1,4-hydroquinone (TMHQ), a key intermediate in the synthesis of vitamin E, is produced via oxidation of 2,3,6-trimethylphenol to the corresponding benzoquinone. Originally this was performed by reaction with chlorine followed by hydrolysis, but this process has now been superseded by oxidation with O2 in the presence of a Cu2Cl2/LiCl catalyst (see Fig. 2.20) (Mercier and Chabardes, 1994). Alternatively, this oxidation can also be cataly.sed by a heteropolyanion (Kozhevnikov, 1995). [Pg.39]

The same complex functions as the catalyst in the Rhone-Poulenc process (Mercier and Chabardes, 1994) for the manufacture of the vitamin A intermediate geranylacetone, via reaction of myrcene with methylacetoacetate in a biphasic system (Fig. 2.28). [Pg.46]

The heterogeneous catalytic system iron phthalocyanine (7) immobilized on silica and tert-butyl hydroperoxide, TBHP, has been proposed for allylic oxidation reactions (10). This catalytic system has shown good activity in the oxidation of 2,3,6-trimethylphenol for the production of 1,4-trimethylbenzoquinone (yield > 80%), a vitamin E precursor (11), and in the oxidation of alkynes and propargylic alcohols to a,p-acetylenic ketones (yields > 60%) (12). A 43% yield of 2-cyclohexen-l-one was obtained (10) over the p-oxo dimeric form of iron tetrasulfophthalocyanine (7a) immobilized on silica using TBHP as oxidant and CH3CN as solvent however, the catalyst deactivated under reaction conditions. [Pg.436]

The literature on basic- and acid-catalyzed alkylation of phenol and of its derivatives is wide [1,2], since this class of reactions finds industrial application for the synthesis of several intermediates 2-methylphenol as a monomer for the synthesis of epoxy cresol novolac resin 2,5-dimethylphenol as an intermediate for the synthesis of antiseptics, dyes and antioxidants 2,6-dimethylphenol used for the manufacture of polyphenylenoxide resins, and 2,3,6-trimethylphenol as a starting material for the synthesis of vitamin E. The nature of the products obtained in phenol methylation is affected by the surface characteristics of the catalyst, since catalysts having acid features address the electrophilic substitution in the ortho and para positions with respect to the hydroxy group (steric effects in confined environments may however affect the ortho/para-C-alkylation ratio), while with basic catalysts the ortho positions become the... [Pg.347]

A domino RCM of an ene-yne was also used by Granja and coworkers [250] for their synthesis of the B-bishomo-steroid analogue 6/3-70. Reaction of the substrate 6/3-69 with the ruthenium catalyst 6/3-13 led to 6/3-70 in 48% yield as a 6.5 l-mix-ture of the two C-10-epimers (Scheme 6/3.20). The aim of this study was to prepare haptenes for the production of catalytic monoclonal antibodies that could be used to study the mechanism of the physiologically important transformation of previtamin D3 into vitamin D3 [251]. [Pg.448]

Vitamin B12 derivatives are also effective catalysts for the electroreductive cyclization of bromoalkenes in conductive microemulsions,299 300 or for ring-expansion reactions in cyclic a-(bromomethyl)-(3-keto esters in DMF.301 Vitamin Bi2 attached to an epoxy-polymer has been used in electrosynthesis of valeronitrile by reductive coupling of iodoethane and acrylonitrile.302... [Pg.489]


See other pages where Vitamin catalyst is mentioned: [Pg.289]    [Pg.114]    [Pg.337]    [Pg.152]    [Pg.350]    [Pg.2133]    [Pg.1230]    [Pg.773]    [Pg.117]    [Pg.352]    [Pg.739]    [Pg.279]    [Pg.104]    [Pg.29]    [Pg.242]    [Pg.59]    [Pg.33]    [Pg.367]    [Pg.527]    [Pg.532]    [Pg.9]    [Pg.40]    [Pg.24]    [Pg.91]    [Pg.159]    [Pg.188]    [Pg.311]    [Pg.320]   


SEARCH



Transition metal catalysts vitamin

© 2024 chempedia.info