Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhone Poulenc processes

Good rhodium retention results were obtained after several recycles. However, optimized ligand/metal ratios and leaching and decomposition rates, which can result in the formation of inactive catalyst, are not known for these ligands and require testing in continuous mode. As a reference, in the Ruhrchemie-Rhone-Poulenc process, the losses of rhodium are <10 g Rh per kg n-butyraldehyde. [Pg.268]

Figure 8-5 shows the homogeneous Hoechst and Rhone Poulenc process using rhodium catalyst. ... [Pg.233]

Figure 8-5. The Hoechst AG and Rhone Poulenc process for producing butyraldehydes from propene (1) reactor, (2) catalyst separation, (3) stripper (using fresh syngas to strip unreacted propylene to recycle), (4) distillation. Figure 8-5. The Hoechst AG and Rhone Poulenc process for producing butyraldehydes from propene (1) reactor, (2) catalyst separation, (3) stripper (using fresh syngas to strip unreacted propylene to recycle), (4) distillation.
An example of a large scale application of the aqueous biphasic concept is the Ruhrchemie/Rhone-Poulenc process for the hydroformylation of propylene to n-butanal (Eqn. (15)), which employs a water-soluble rhodium(I) complex of trisulphonated triphenylphosphine (tppts) as the catalyst (Cornils and Wiebus, 1996). [Pg.46]

The same complex functions as the catalyst in the Rhone-Poulenc process (Mercier and Chabardes, 1994) for the manufacture of the vitamin A intermediate geranylacetone, via reaction of myrcene with methylacetoacetate in a biphasic system (Fig. 2.28). [Pg.46]

Another illustration of the enormous potential of catalytic methodologies in fine chemicals manufacture is the new Rhone-Poulenc process for the flavour ingredient, vanillin (Ratton, 1998). The process involves four steps, all performed with a heterogeneous catalyst, starting from phenol (Fig. 2.37). [Pg.54]

Immobilization of catalysts is an important process design feature (see Chapter 9.9). A recent example of catalyst immobilization is the biphasic approach which seems superior to immobilization on solids, as successfully proven in the Ruhrchemie/Rhone Poulenc process for the hydro-formylation of olefins.286 Supported liquid phase catalysis was devised as a method for the immobilization of homogeneous catalysts on solids. When the liquid phase is water, a water-soluble catalyst may be physically bound to the solid. [Pg.114]

Biphasic techniques for recovery and recycle are among the recent improvements of homogeneous catalysis - and they are the only developments which have been recently and successfully applied in the chemical industry. They are specially introduced into the hydroformylation (or "oxo") reaction, where they form a fourth generation of oxo processes (Figure 5.1 [1]). They are established as the "Ruhrchemie/Rhone-Poulenc process" (RCH/RP) [2] cf. also Section 5.2.4.1), with annual production rates of approximately 800,000 tonnes y"1 (tpy). [Pg.105]

Figure 5.1. The generations of oxo processes [3] (symbolized by full points).A, First generation Ruhrchemie process 1943 (diaden process [4]) B, second generation Ruhrchemie process C, second generation BASF process D, second generation Kuhlmann process E, third generation Shell process F, third generation LPO (UCC) process G, third generation BASF process H, third generation Exxon (Kuhlmann) process I, fourth generation Ruhrchemie/Rhone-Poulenc process... Figure 5.1. The generations of oxo processes [3] (symbolized by full points).A, First generation Ruhrchemie process 1943 (diaden process [4]) B, second generation Ruhrchemie process C, second generation BASF process D, second generation Kuhlmann process E, third generation Shell process F, third generation LPO (UCC) process G, third generation BASF process H, third generation Exxon (Kuhlmann) process I, fourth generation Ruhrchemie/Rhone-Poulenc process...
Eventually, the spent catalyst solution has to leave the oxo loop for work-up. The Ruhrchemie works of Celanese AG in Oberhausen (Germany) operate several rhodium-based oxo processes besides the well-known Ruhrchemie/Rhone-Poulenc process (RCF1/RP, the described low pressure oxo process with TPPTS-modified Rh catalyst), there are the Ruhrchemie process with an unmodified Rh catalyst at high pressure (comparable to the late ICI process [76] this variant is for the benefit of a high iso/n ratio... [Pg.128]

Since in some of the preliminary experiments no rhodium losses could be detected, it is assumed that in an optimised continuous process the metal leaching will be in the range of the biphasic Ruhrchemie/Rhone-Poulenc process operating around 1 ppb. This would result in a loss of rhodium of 0.1 kg per year which is approximately 0.7 % in the case of the biphasic ionic liquid process and 0.2 % in the case of the SILP process. The inventory of the ionic liquid is slightly lower in the case of the liquid-liquid... [Pg.208]

Rhombic prism lattice, 8 114t Rhombohedral structure, of ferroelectric crystals, 11 95, 96 Rhombohedron lattice, 8 114t Rhomboidal symmetry, 8 114t Rhone-Poulenc process, 24 482, 485 Rhovanil extra pure vanillin, 25 548t, 549-550... [Pg.807]

The synthesis of aldehydes via hydroformylation of alkenes is an important industrial process used to produce in the region of 6 million tonnes a year of aldehydes. These compounds are used as intermediates in the manufacture of plasticizers, soaps, detergents and pharmaceutical products [7], While the majority of aldehydes prepared from alkene hydroformylation are done so in organic solvents, some research in 1975 showed that rhodium complexes with sulfonated phosphine ligands immobilized in water were able to hydroformylate propene with virtually complete retention of rhodium in the aqueous phase [8], Since catalyst loss is a major problem in the production of bulk chemicals of this nature, the process was scaled up, culminating in the Ruhrchemie-Rhone-Poulenc process for hydroformylation of propene, initially on a 120000 tonne per year scale [9], The development of this biphasic process represents one of the major transitions since the discovery of the hydroformylation reaction. The key transitions in this field include [10] ... [Pg.224]

The economic and environmental benefits of the Ruhrchemie-Rhone-Poulenc process have been closely scrutinized since the plant has been in operation. [Pg.226]

In Chapter 8 we will discuss the hydroformylation of propene using rhodium catalysts. Rhodium is most suited for the hydroformylation of terminal alkenes, as we shall discuss later. In older plants cobalt is still used for the hydroformylation of propene, but the most economic route for propene hydroformylation is the Ruhrchemie/Rhone-Poulenc process using two-phase catalysis with rhodium catalysts. For higher alkenes, cobalt is still the preferred catalyst, although recently major improvements on rhodium (see Chapter 8) and palladium catalysts have been reported [3],... [Pg.128]

The third generation process concerns the Ruhrchemie/Rhone-Poulenc process utilizing a two-phase system containing water-soluble rhodium-tppts in one phase and the product butanal in the organic phase. The process has been in operation since 1984 by Ruhrchemie (or Celanese, nowadays). The system will be discussed in section 8.2.5. Since 1995 this process is also used for the hydroformylation of 1-butene. [Pg.140]

Rhodium-catalyzed biphasic hydroformylation of olefins. The Ruhrchemie-Rhone Poulenc process for manufacturing... [Pg.6]

There are many important points and lessons to be learned from the development and operation of the Ruhrchemie-Rhone Poulenc process and we shall now have a look at the most important ones. [Pg.109]

As mentioned earlier, in the Ruhrchemie-Rhone Poulenc process for propene hydroformylation the pH of the aqueous phase is kept between 5 and 6. This seems to be an optimum in order to avoid acid- and base-catalyzed side reactions of aldehydes and degradation of TPPTS. Nevertheless, it has been observed in this [93] and in many other cases [38,94-96,104,128,131] that the [RhH(CO)(P)3] (P = water-soluble phosphine) catalysts work more actively at higher pH. This is unusual for a reaction in which (seemingly) no charged species are involved. For example, in 1-octene hydroformylation with [ RhCl(COD) 2] + TPPTS catalyst in a biphasic medium the rates increased by two- to five-fold when the pH was changed from 7 to 10 [93,96]. In the same detailed kinetic studies [93,96] it was also established that the rate of 1-octene hydroformylation was a significantly different function of reaction parameters such as catalyst concentration, CO and hydrogen pressure at pH 7 than at pH 10. [Pg.120]

The Ruhrchemie/Rhone-Poulenc process is performed annually on a 600,000 metric ton scale (18). In this process, propylene is hydroformylated to form butyraldehyde. While the solubility of propylene in water (200 ppm) is sufficient for catalysis, the technique cannot be extended to longer-chain olefins, such as 1-octene (<3 ppm solubility) (20). Since the reaction occurs in the aqueous phase (21), the hydrophobicity of the substrate is a paramount concern. We overcame these limitations via the addition of a polar organic co-solvent coupled with subsequent phase splitting induced by dissolution of gaseous CO2. This creates the opportunity to run homogeneous reactions with extremely hydrophobic substrates in an organic/aqueous mixture with a water-soluble catalyst. After C02-induced phase separation, the catalyst-rich aqueous phase and the product-rich organic phase can be easily decanted and the aqueous catalyst recycled. [Pg.400]

Addition of Active C-H Compounds to Dienes the Rhone-Poulenc Process for Geranylacetone - Geranylacetone is a precursor of isophytol, a key intermediate in the manufacture of vitamine E (tocopherol) (see Figure 16), the world market of which is 10 000 t/a at a price of 25-30 /kg tocopherylacetate.54... [Pg.165]

Figure 17 The novel biphasic Rhltppts-calalysed Rhone-Poulenc process for the manufacture of geranylacetone. Figure 17 The novel biphasic Rhltppts-calalysed Rhone-Poulenc process for the manufacture of geranylacetone.
Scheme 5. Deactivation mechanism of the Rh(I) catalyst in the Ruhrchemie/Rhone-Poulenc process. Scheme 5. Deactivation mechanism of the Rh(I) catalyst in the Ruhrchemie/Rhone-Poulenc process.
Fig. 4. Flow diagram of the Ruhrchemie/Rhone-Poulenc process (137) 1, continuous-flow, stirred tank reactor 2, phase separator 3, stripping column 4, distillation column 5, heat exchanger 6, falling film evaporator 7, liquid-vapor separator. Fig. 4. Flow diagram of the Ruhrchemie/Rhone-Poulenc process (137) 1, continuous-flow, stirred tank reactor 2, phase separator 3, stripping column 4, distillation column 5, heat exchanger 6, falling film evaporator 7, liquid-vapor separator.
The prototype industrial process based on this concept is the Ruhrchemie-Rhone Poulenc process for the hydroformylation of propylene to butanal94,219,220 (see Section 7.3.1). Because of the use of appropriately modified water-soluble ligands, the catalyst resides and operates in the aqueous phase. The particular features of this process are the positive energy balance and easy catalyst recovery, namely, the simply circulation of the aqueous catalyst solution. New types of water-soluble Ir and Rh complexes with tris(hydroxymethyl)phosphine222 were described, and the biphasic hydroformylation of 1-hexene was accomplished in ionic liquids.223 A cationic sugar-substituted Rh complex displays high regioselectivity to branched aldehydes.224... [Pg.387]

Speichim-Rhone Poulenc Process. Most of Rhone Poulenc s existing plants are of a single stirred vessel configuration. However, a two-vessel arrangement, the Diplo system,18 has been offered and retrofitted into several of the previous single reactor plants. [Pg.1099]


See other pages where Rhone Poulenc processes is mentioned: [Pg.169]    [Pg.234]    [Pg.165]    [Pg.47]    [Pg.54]    [Pg.176]    [Pg.226]    [Pg.151]    [Pg.21]    [Pg.106]    [Pg.108]    [Pg.129]    [Pg.172]    [Pg.399]    [Pg.234]    [Pg.25]    [Pg.812]    [Pg.108]   
See also in sourсe #XX -- [ Pg.383 ]

See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Addition of Active C-H compounds to Dienes the Rhone-Poulenc Process for Geranylacetone

Hydroformylation Rhone Poulenc process

Hydroformylation Ruhrchemie/Rhone-Poulenc process

Rhodium-catalyzed biphasic hydroformylation of olefins. The Ruhrchemie-Rhone Poulenc process for manufacturing butyraldehyde

Rhone

Ruhrchemie/Rhone-Poulenc process

© 2024 chempedia.info