Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation effects

In a first full scale attempt at a new polymerisation process, the thermally unstable initiator was charged and heated to reaction temperature, but there was then an unforeseen delay of an horn before monomer addition was started. The rate of polymerisation effected by the depleted initiator was lower than the addition rate of the monomer, and the concentration of the latter reached a level at which an uncontrollable polymerisation set in which eventually led to pressure-failure of the vessel seals. Precautions to prevent such occurrences are detailed. In another incident, operator error led to catalyst, condensing styrene and acrylonitrile being ducted into an unstirred weighing tank instead of a reactor. When the error was recognised, the reacting mixture was dropped into drums containing inhibitor. One of the sealed drums had insufficient inhibitor to stop the reaction, and it slowly heated and eventually burst [1], The features and use of... [Pg.343]

Further research [30, 40-44] has demonstrated that known rapid polymerisation effects are scalable to any fast process, including the synthesis of low MW prodncts. [Pg.3]

Bleda-Martinez, M. et al. 2007. Polyaniline/porous carbon electrodes by chemical polymerisation Effect of carbon surface chemistry. Electrochimica Acta 52 4962-4968. [Pg.67]

Sonochemistry is also proving to have important applications with polymeric materials. Substantial work has been accomplished in the sonochemical initiation of polymerisation and in the modification of polymers after synthesis (3,5). The use of sonolysis to create radicals which function as radical initiators has been well explored. Similarly the use of sonochemicaHy prepared radicals and other reactive species to modify the surface properties of polymers is being developed, particularly by G. Price. Other effects of ultrasound on long chain polymers tend to be mechanical cleavage, which produces relatively uniform size distributions of shorter chain lengths. [Pg.263]

Antimony trichloride is used as a catalyst or as a component of catalysts to effect polymerisation of hydrocarbons and to chlorinate olefins. It is also used in hydrocracking of coal (qv) and heavy hydrocarbons (qv), as an analytic reagent for chloral, aromatic hydrocarbons, and vitamin A, and in the microscopic identification of dmgs. Liquid SbCl is used as a nonaqueous solvent. [Pg.204]

The temperature at which decarboxylation occurs is of particular interest in manufacturing processes based on polymerisation in the molten state where reaction temperatures may be near the point at which decomposition of the diacid occurs. Decarboxylation temperatures are tabulated in Table 2 along with molar heats of combustion. The diacids become more heat stable at carbon number four with even-numbered acids always more stable. Thermal decomposition is strongly influenced by trace constituents, surface effects, and other environmental factors actual stabiUties in reaction systems may therefore be lower. [Pg.61]

Fig. 4. Effect of polymerisation temperature on vinyl content at a 2 1 modifier 1itbium ratio. Fig. 4. Effect of polymerisation temperature on vinyl content at a 2 1 modifier 1itbium ratio.
These processes have supplanted the condensation reaction of ethanol, carbon monoxide, and acetylene as the principal method of generating ethyl acrylate [140-88-5] (333). Acidic catalysts, particularly sulfuric acid (334—338), are generally effective in increasing the rates of the esterification reactions. Care is taken to avoid excessive polymerisation losses of both acryflc acid and the esters, which are accentuated by the presence of strong acid catalysts. A synthesis for acryflc esters from vinyl chloride (339) has also been examined. [Pg.415]

Addition polymerisation is effected by the activation of the double bond of a vinyl monomer, thus enabling it to link up to other molecules. It has been shown that this reaction occurs in the form of a chain addition process with initiation, propagation and termination steps. [Pg.24]

The propagation rate is governed by the concentrations of growing chains [M—] and of monomers [M]. Since this is in effect the rate of monomer consumption it also becomes the overall rate of polymerisation... [Pg.29]

This equation indicates that the reaction rate is proportional to the square root of the initiator concentration and to the monomer concentration. It is found that the relationship with initiator concentration is commonly borne out in practice (see Figure 2.18) but that deviations may occur with respect to monomer concentration. This may in some cases be attributed to the dependency of / on monomer concentration, particularly at low efficiencies, and to the effects of certain solvents in solution polymerisations. [Pg.30]

Figure 2.19. Effect of chain transfer solvents on the degree of polymerisation of polystyrene. (After... Figure 2.19. Effect of chain transfer solvents on the degree of polymerisation of polystyrene. (After...
An increase in the rate of radical production in emulsion polymerisation will reduce the molecular weight since it will increase the frequency of termination. An increase in the number of particles will, however, reduce the rate of entry of radicals into a specific micelle and increase molecular weight. Thus at constant initiator concentration and temperature an increase in micelles (in effect in soap concentration) will lead to an increase in molecular weight and in rate of conversion. [Pg.33]

The close structural similarities between polychloroprene and the natural rubber molecule will be noted. However, whilst the methyl group activates the double bond in the polyisoprene molecule the chlorine atom has the opposite effect in polychloroprene. Thus the polymer is less liable to oxygen and ozone attack. At the same time the a-methylene groups are also deactivated so that accelerated sulphur vulcanisation is not a feasible proposition and alternative curing systems, often involving the pendant vinyl groups arising from 1,2-polymerisation modes, are necessary. [Pg.295]

Bulk polymerisation is heterogeneous since the polymer is insoluble in the monomer. The reaction is autocatalysed by the presence of solid polymer whilst the concentration of initiator has little effect on the molecular weight. This is believed to be due to the overriding effect of monomer transfer reactions on the chain length. As in all vinyl chloride polymerisation oxygen has a profound inhibiting effect. [Pg.315]

As with poly(vinyl alcohol), poly(vinyl cinnamate) is prepared by chemical modification of another polymer rather than from monomer . One process is to treat poly(vinyl alcohol) with cinnamoyl chloride and pyridine but this is rather slow. Use of the Schotten Baumann reaction will, however, allow esterification to proceed at a reasonable rate. In one example poly(vinyl alcohol) of degree of polymerisation 1400 and degree of saponification of 95% was dissolved in water. To this was added a concentrated potassium hydroxide solution and then cinnamoyl chloride in methyl ethyl ketone. The product was, in effect a vinyl alcohol-vinyl cinnamate copolymer Figure 14.8)... [Pg.396]

Methyl methacrylate will polymerise readily and the effect may be observed with non-inhibited samples of monomers during storage. In commercial practice the monomer is supplied with up to 0.10% of an inhibitor such as hydroquinone, which is removed before polymerisation, either by distillation under reduced pressure or, in some cases, by washing with an alkaline solution. [Pg.401]

The reluctance of acrylic monomers to polymerise in the presence of air has been made a virtue with the anaerobic acrylic adhesives. These are usually dimethacrylates such as tetramethylene glycol dimethacrylate. The monomers are supplied with a curing system comprising a peroxide and an amine as part of a one-part pack. When the adhesive is placed between mild steel surfaces air is excluded, which prevents air inhibition, and the iron present acts as a polymerisation promoter. The effectiveness as a promoter varies from one metal to another and it may be necessary to use a primer such as cobalt naphthenate. The anaerobic adhesives have been widely used for sealing nuts and bolts and for a variety of engineering purposes. Small tube containers are also available for domestic use. [Pg.420]


See other pages where Polymerisation effects is mentioned: [Pg.324]    [Pg.2539]    [Pg.463]    [Pg.27]    [Pg.324]    [Pg.2539]    [Pg.463]    [Pg.27]    [Pg.140]    [Pg.433]    [Pg.433]    [Pg.380]    [Pg.251]    [Pg.26]    [Pg.430]    [Pg.109]    [Pg.338]    [Pg.389]    [Pg.219]    [Pg.328]    [Pg.332]    [Pg.363]    [Pg.88]    [Pg.332]    [Pg.496]    [Pg.483]    [Pg.317]    [Pg.317]    [Pg.533]    [Pg.268]    [Pg.34]    [Pg.210]    [Pg.224]    [Pg.403]    [Pg.432]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Effect of Vitrification on Polymerisation Rate

Electric Field Effects on Cationic Polymerisation

© 2024 chempedia.info