Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity alternatives

Methacrylic acid polymer is iasoluble ia the monomer, which may result ia the plugging of transfer lines and vent systems. Polymers of the lower alkyl esters are often soluble ia the parent monomer and may be detected by an iacrease ia solution viscosity. Alternatively, dilution with a nonsolvent for the polymer such as methanol results ia the formation of haze and can be used as a diagnostic tool for determining presence of polymer. [Pg.254]

On homogenization, the lysate may drastically increase in viscosity due to DNA release. This can be ameliorated to some extent using multiple passes to reduce the viscosity. Alternatively, precipitants or nucleic acid digesting enzymes can be used to remove these viscosity-enhancing contaminants. [Pg.2059]

The upper critical diameter can be increased by increasing the liquid viscosity alternatively a correction term may be applied. For routine applications the diameters obtained using Stokes equation at Re greater than 0.25 are accepted as correct. [Pg.301]

Y = surface tension, 9 = contact angle, and ri = liquid viscosity. Alternatively for the purpose of these experiments it will be more convenient to employ the volume V, of liquid penetrating into the porous structure after time t. Thus from [l] it can be shown (4) that for capillaries so small that the external pressure is negligible in comparison to the capillary pressure... [Pg.436]

To keep the paint manageable at high solids, the formulator has to keep the polymer molecular weight down since, as will be seen in Chapter 9, this reduces the viscosity. Alternatively (Chapter 9 again), it is necessary to take the polymer out of solution (if this is practicable and suitable) and make a dispersion or emulsion paint. [Pg.95]

Steam is injected into a reservoir to reduce oil viscosity and make it flow more easily. This technique is used in reservoirs containing high viscosity crudes where conventional methods only yield very low recoveries. Steam can be injected in a cyclic process in which the same well is used for injection and production, and the steam is allowed to soak prior to back production (sometimes known as Huff and Puff). Alternatively steam is injected to create a steam flood, sweeping oil from injectors to producers much as in a conventional waterflood. In such cases it is still found beneficial to increase the residence (or relaxation) time of the steam to heat treat a greater volume of reservoir. [Pg.357]

Theoretical models of the film viscosity lead to values about 10 times smaller than those often observed [113, 114]. It may be that the experimental phenomenology is not that supposed in derivations such as those of Eqs. rV-20 and IV-22. Alternatively, it may be that virtually all of the measured surface viscosity is developed in the substrate through its interactions with the film (note Fig. IV-3). Recent hydrodynamic calculations of shape transitions in lipid domains by Stone and McConnell indicate that the transition rate depends only on the subphase viscosity [115]. Brownian motion of lipid monolayer domains also follow a fluid mechanical model wherein the mobility is independent of film viscosity but depends on the viscosity of the subphase [116]. This contrasts with the supposition that there is little coupling between the monolayer and the subphase [117] complete explanation of the film viscosity remains unresolved. [Pg.120]

The shear viscosity is a tensor quantity, with components T] y, t],cz, T)yx> Vyz> Vzx> Vzy If property of the whole sample rather than of individual atoms and so cannot be calculat< with the same accuracy as the self-diffusion coefficient. For a homogeneous fluid the cor ponents of the shear viscosity should all be equal and so the statistical error can be reducf by averaging over the six components. An estimate of the precision of the calculation c then be determined by evaluating the standard deviation of these components from tl average. Unfortunately, Equation (7.89) cannot be directly used in periodic systems, evi if the positions have been unfolded, because the unfolded distance between two particl may not correspond to the distance of the minimum image that is used to calculate the fore For this reason alternative approaches are required. [Pg.397]

Our approach in this chapter is to alternate between experimental results and theoretical models to acquire familiarity with both the phenomena and the theories proposed to explain them. We shall consider a model for viscous flow due to Eyring which is based on the migration of vacancies or holes in the liquid. A theory developed by Debye will give a first view of the molecular weight dependence of viscosity an equation derived by Bueche will extend that view. Finally, a model for the snakelike wiggling of a polymer chain through an array of other molecules, due to deGennes, Doi, and Edwards, will be taken up. [Pg.76]

An alternative point of view assumes that each repeat unit of the polymer chain offers hydrodynamic resistance to the flow such that f-the friction factor per repeat unit-is applicable to each of the n units. This situation is called the free-draining coil. The free-draining coil is the model upon which the Debye viscosity equation is based in Chap. 2. Accordingly, we use Eq. (2.53) to give the contribution of a single polymer chain to the rate of energy dissipation ... [Pg.610]

The choice of the solvent also has a profound influence on the observed sonochemistry. The effect of vapor pressure has already been mentioned. Other Hquid properties, such as surface tension and viscosity, wiU alter the threshold of cavitation, but this is generaUy a minor concern. The chemical reactivity of the solvent is often much more important. No solvent is inert under the high temperature conditions of cavitation (50). One may minimize this problem, however, by using robust solvents that have low vapor pressures so as to minimize their concentration in the vapor phase of the cavitation event. Alternatively, one may wish to take advantage of such secondary reactions, for example, by using halocarbons for sonochemical halogenations. With ultrasonic irradiations in water, the observed aqueous sonochemistry is dominated by secondary reactions of OH- and H- formed from the sonolysis of water vapor in the cavitation zone (51—53). [Pg.262]

The main raw material required for the production of viscose is ceUulose (qv), a natural polymer of D-glucose (Fig. 1). The repeating monomer unit is a pair of anhydroglucose units (AGU). CeUulose and starch (qv) are identical but for the way in which the ring oxygen atoms alternate from side to side of the polymer chain (beta linkages) in ceUulose, but remain on the same side (alpha linkages) in starch. [Pg.345]

The correct viscose age or ripeness for spinning varies according to the type of fiber being made. Ripeness can be assessed by estabHshing the salt concentration necessary to just coagulate the viscose dope. The preferred test uses sodium chloride (salt figure) although ammonium chloride is the basis of the alternative method (Hottenroth number). [Pg.347]

Low temperature filtration (qv) is a common final refining step to remove paraffin wax in order to lower the pour point of the oil (14). As an alternative to traditional filtration aided by a propane or methyl ethyl ketone solvent, catalytic hydrodewaxing cracks the wax molecules which are then removed as lower boiling products. Finished lubricating oils are then made by blending these refined stocks to the desired viscosity, followed by introducing additives needed to provide the required performance. Table 3 Usts properties of typical commercial petroleum oils. Methods for measuring these properties are available from the ASTM (10). [Pg.237]

In wet combustion, water is injected concurrently and alternately with air, extending the steam 2one and aiding heat transfer to the cmde oil reducing oil viscosity. This can decrease injected air produced oil ratio and improve project economics. [Pg.195]


See other pages where Viscosity alternatives is mentioned: [Pg.244]    [Pg.328]    [Pg.505]    [Pg.150]    [Pg.87]    [Pg.264]    [Pg.124]    [Pg.79]    [Pg.244]    [Pg.328]    [Pg.505]    [Pg.150]    [Pg.87]    [Pg.264]    [Pg.124]    [Pg.79]    [Pg.119]    [Pg.210]    [Pg.126]    [Pg.451]    [Pg.189]    [Pg.14]    [Pg.596]    [Pg.42]    [Pg.136]    [Pg.365]    [Pg.141]    [Pg.325]    [Pg.346]    [Pg.379]    [Pg.400]    [Pg.78]    [Pg.262]    [Pg.174]    [Pg.193]    [Pg.304]    [Pg.354]    [Pg.512]    [Pg.479]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Viscosity alternate unit

© 2024 chempedia.info