Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelasticity description

The relaxation modulus is the core of most of the viscoelastic descriptions and the above expression can be checked from experimental viscoelastic functions such as the complex shear modulus G (co) for instance. In addition to the molecTilar weight distribution function P(M), one has to know a few additional parameters related to the chemical species the monomeric relaxation time x,... [Pg.127]

Hence, such a plot should be prepared for the particular application and emulsifying device to be dealt with. As far as some advice could be helpful, it may be said that above 60-70% internal idiase. most emulsions become p.seu-doplasiic fluids and their viscosity depends on applied shear r e. often according to a power law model. Above 85—90% internal phase, the emulsion no longer behaves as a simple fluid and a viscoelastic description is often useful. [Pg.95]

The Maxwell Model. In the above development, discussion moves from elastic behavior to viscoelastic descriptions of material behavior. In a simple sense, viscoelasticity is the behavior exhibited by a material that has both viscous and elastic elements in its response to a deformation or load. In early days, this was often represented by elastic or viscous mechanical elements combined in different ways (9-12). The simplest models are two element models that contain a viscous element (dashpot) and an elastic element (spring). The dashpot is assumed to follow a Newtonian fluid constitutive law in which the stress is related directly to the strain rate by the following expression ... [Pg.9069]

Polymers owe much of their attractiveness to their ease of processing. In many important teclmiques, such as injection moulding, fibre spinning and film fonnation, polymers are processed in the melt, so that their flow behaviour is of paramount importance. Because of the viscoelastic properties of polymers, their flow behaviour is much more complex than that of Newtonian liquids for which the viscosity is the only essential parameter. In polymer melts, the recoverable shear compliance, which relates to the elastic forces, is used in addition to the viscosity in the description of flow [48]. [Pg.2534]

The theoretical description of a non-isothermal viscoelastic flow presents a conceptual difficulty. To give a brief explanation of this problem we note that in a non-isothennal flow field the evolution of stresses will be affected by the... [Pg.89]

Baney, J.M., Hui, C.Y. and Cohen, C., Experimental investigations of a stress intensity factor based description of the adhesion of viscoelastic materials. Langmuir, 17(3), 681-687 (2001). [Pg.219]

To complete the mechanical response description in this book, the phenomena of viscoelasticity, spall (dynamic tensile behavior), melting, and compression of porous solids are briefly considered. [Pg.45]

The ramp of pressure to about 3 GPa observed in shock-loaded fused quartz has been used very effectively in acceleration-pulse loading studies of viscoelastic responses of polymers by Schuler and co-workers. The loading rates obtained at various thicknesses of fused quartz have been accurately characterized and data are summarized in Fig. 3.6. At higher peak pressures there are no precise standard materials to produce ramp loadings, but materials such as the ceramic pyroceram have been effectively employed. (See the description of the piezoelectric polymer in Chap. 5.)... [Pg.60]

The above considerations illustrate the difficulties of trying to formulate equations descriptive of rheological behavior of polymer melts with gas bubbles. An optimistic approach to the solution of this task is contained in [60, 61]. The content of these works is revealed by their titles On the Use of the Theory of Viscoelasticity for Describing of the Behaviour of Porous Material and for the Calculation of construction... [Pg.114]

The theories of elastic and viscoelastic materials can be obtained as particular cases of the theory of materials with memory. This theory enables the description of many important mechanical phenomena, such as elastic instability and phenomena accompanying wave propagation. The applicability of the methods of the third approach is, on the other hand, limited to linear problems. It does not seem likely that further generalization to nonlinear problems is possible within the framework of the assumptions of this approach. The results obtained concern problems of linear viscoelasticity. [Pg.646]

Many other techniques of measuring viscoelastic parameters, such as transient shear, creep and sinusoidally-varying shear, are available. A good description, together with the merits and demerits of each of these techniques, is available in Whorlow(19. ... [Pg.118]

In particular it can be shown that the dynamic flocculation model of stress softening and hysteresis fulfils a plausibility criterion, important, e.g., for finite element (FE) apphcations. Accordingly, any deformation mode can be predicted based solely on uniaxial stress-strain measurements, which can be carried out relatively easily. From the simulations of stress-strain cycles at medium and large strain it can be concluded that the model of cluster breakdown and reaggregation for prestrained samples represents a fundamental micromechanical basis for the description of nonlinear viscoelasticity of filler-reinforced rubbers. Thereby, the mechanisms of energy storage and dissipation are traced back to the elastic response of tender but fragile filler clusters [24]. [Pg.621]

Actually, some fluids and solids have both elastic (solid) properties and viscous (fluid) properties. These are said to be viscoelastic and are most notably materials composed of high polymers. The complete description of the rheological properties of these materials may involve a function relating the stress and strain as well as derivatives or integrals of these with respect to time. Because the elastic properties of these materials (both fluids and solids) impart memory to the material (as described previously), which results in a tendency to recover to a preferred state upon the removal of the force (stress), they are often termed memory materials and exhibit time-dependent properties. [Pg.59]

The continuous chain model includes a description of the yielding phenomenon that occurs in the tensile curve of polymer fibres between a strain of 0.005 and 0.025 [ 1 ]. Up to the yield point the fibre extension is practically elastic. For larger strains, the extension is composed of an elastic, viscoelastic and plastic contribution. The yield of the tensile curve is explained by a simple yield mechanism based on Schmid s law for shear deformation of the domains. This law states that, for an anisotropic material, plastic deformation starts at a critical value of the resolved shear stress, ry =/g, along a slip plane. It has been... [Pg.20]

For the investigation of the time and the temperature dependence of the fibre strength it is necessary to have a theoretical description of the viscoelastic tensile behaviour of polymer fibres. Baltussen has shown that the yielding phenomenon, the viscoelastic and the plastic creep of a polymer fibre, can be described by the Eyring reduced time (ERT) model [10]. The shear deformation of a domain brings about a mutual displacement of adjacent chains, the... [Pg.88]

This result is very interesting because whilst we have shown that G(0) has been excluded from the relaxation spectrum H at all finite times (Section 4.4.5), it is intrinsically related to the retardation spectrum L through Jc. Thus the retardation spectrum is a convenient description of the temporal processes of a viscoelastic solid. Conversely it has little to say about the viscous processes in a viscoelastic liquid. In the high frequency limit where co->oo the relationship becomes... [Pg.135]

We begin in Section II with a review of the fundamental concepts of hydrodynamics and boundary conditions. In Section III, we present some common descriptions of coupling, followed in Section IV by a discussion of viscoelastic adsorbate films and the so-called inner slip. In Section V, we consider with the concept of stochastic boundary conditions, which we believe will be an important topic in situations where random fluctuations are strong. Finally, in Section VI, we present our concluding ideas and discuss some areas for future study. [Pg.62]

Note 1 Both viscous and elastic responses to stress or strain are required for the description of viscoelastic behaviour. [Pg.162]


See other pages where Viscoelasticity description is mentioned: [Pg.1]    [Pg.6733]    [Pg.1]    [Pg.6733]    [Pg.852]    [Pg.80]    [Pg.156]    [Pg.154]    [Pg.135]    [Pg.238]    [Pg.45]    [Pg.51]    [Pg.114]    [Pg.115]    [Pg.127]    [Pg.373]    [Pg.622]    [Pg.84]    [Pg.352]    [Pg.64]    [Pg.104]    [Pg.415]    [Pg.1]    [Pg.139]    [Pg.140]    [Pg.141]    [Pg.144]    [Pg.174]    [Pg.195]    [Pg.244]    [Pg.254]    [Pg.271]    [Pg.88]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



© 2024 chempedia.info