Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tensile viscoelasticity

Leeson-Dietrich, J., Boughner, D., and Vesely, 1.1995. Porcine pulmonary and aortic valves a comparison of their tensile viscoelastic properties at physiological strain rates. /. Heart Valve Dis. 4 88-94. [Pg.972]

Lee JM and Wilson GJ, Anisotropic tensile viscoelastic properties of vascular graft materials tested at low strain rates . Biomaterials, 1986 7 423-431. [Pg.726]

The paper discusses the application of dynamic indentation method and apparatus for the evaluation of viscoelastic properties of polymeric materials. The three-element model of viscoelastic material has been used to calculate the rigidity and the viscosity. Using a measurements of the indentation as a function of a current velocity change on impact with the material under test, the contact force and the displacement diagrams as a function of time are plotted. Experimental results of the testing of polyvinyl chloride cable coating by dynamic indentation method and data of the static tensile test are presented. [Pg.239]

Tensile Testing. The most widely used instmment for measuring the viscoelastic properties of soHds is the tensile tester or stress—strain instmment, which extends a sample at constant rate and records the stress. Creep and stress—relaxation can also be measured. Numerous commercial instmments of various sizes and capacities are available. They vary greatiy in terms of automation, from manually operated to completely computer controlled. Some have temperature chambers, which allow measurements over a range of temperatures. Manufacturers include Instron, MTS, Tinius Olsen, Apphed Test Systems, Thwing-Albert, Shimadzu, GRC Instmments, SATEC Systems, Inc., and Monsanto. [Pg.195]

A typical stress—strain curve generated by a tensile tester is shown in Eigure 41. Creep and stress—relaxation results are essentially the same as those described above. Regarding stress—strain diagrams and from the standpoint of measuring viscoelastic properties, the early part of the curve, ie, the region... [Pg.195]

This equation is the basis of linear viscoelasticity and simply indicates that, in a tensile test for example, for a fixed value of elapsed time, the stress will be directly proportional to the strain. The different types of response described are shown schematically in Fig. 2.1. [Pg.42]

To add to this picture it should be realised that so far only the viscous component of behaviour has been referred to. Since plastics are viscoelastic there will also be an elastic component which will influence the behaviour of the fluid. This means that there will be a shear modulus, G, and, if the channel section is not uniform, a tensile modulus, , to consider. If yr and er are the recoverable shear and tensile strains respectively then... [Pg.345]

To complete the mechanical response description in this book, the phenomena of viscoelasticity, spall (dynamic tensile behavior), melting, and compression of porous solids are briefly considered. [Pg.45]

The mechanical behavior of plastics is dominated by such viscoelastic phenomena as tensile strength, elongation at breaks, stiffness, and rupture energy, which are often the controlling factors in a design. The viscous attributes of plastic melt flow are also important considerations in the fabrication of plastic products. (Chapter 8, INFLUENCE ON PERFORMANCE, Viscoelasticity). [Pg.39]

When a plastic material is subjected to an external force, a part of the work done is elastically stored and the rest is irreversibly (or viscously) dissipated hence a viscoelastic material exists. The relative magnitudes of such elastic and viscous responses depend, among other things, on how fast the body is being deformed. It can be seen via tensile stress-strain curves that the faster the material is deformed, the greater will be the stress developed since less of the work done can be dissipated in the shorter time. [Pg.42]

When a viscoelastic material is subjected to a constant strain, the stress initially induced within it decays in a time-dependent manner. This behavior is called stress relaxation. The viscoelastic stress relaxation behavior is typical of many TPs. The material specimen is a system to which a strain-versus-time profile is applied as input and from which a stress-versus-time profile is obtained as an output. Initially the material is subjected to a constant strain that is maintained for a long period of time. An immediate initial stress gradually approaches zero as time passes. The material responds with an immediate initial stress that decreases with time. When the applied strain is removed, the material responds with an immediate decrease in stress that may result in a change from tensile to compressive stress. The residual stress then gradually approaches zero. [Pg.64]

Better cross-linking with the latter also improves post Tg viscoelastic responses of the rubber vulcanizates. Similar effect has also been observed with polychloroprene as investigated by Sahoo and Bhowmick [41]. Figure 4.8 represents the comparative tensile stress-strain behavior of polychloroprene rubber (CR) vulcanizates, highlighting superiority of the nanosized ZnO over conventional rubber grade ZnO [41]. [Pg.94]

A viscoelastic solid may be characterized by a complex tensile modulus, Y (f), a function of strain rate frequency, /,... [Pg.294]

Some viscoelasticity results have been reported for bimodal PDMS [120], using a Rheovibron (an instrument for measuring the dynamic tensile moduli of polymers). Also, measurements have been made on permanent set for PDMS networks in compressive cyclic deformations [121]. There appeared to be less permanent set or "creep" in the case of the bimodal elastomers. This is consistent in a general way with some early results for polyurethane elastomers [122], Specifically, cyclic elongation measurements on unimodal and bimodal networks indicated that the bimodal ones survived many more cycles before the occurrence of fatigue failure. The number of cycles to failure was found to be approximately an order of magnitude higher for the bimodal networks, at the same modulus at 10% deformation [5] ... [Pg.363]

Here m is the usual small-strain tensile stress-relaxation modulus as described and observed in linear viscoelastic response [i.e., the same E(l) as that discussed up to this point in the chapter). The nonlinearity function describes the shape of the isochronal stress-strain curve. It is a simple function of A, which, however, depends on the type of deformation. Thus for uniaxial extension,... [Pg.83]

The continuous chain model includes a description of the yielding phenomenon that occurs in the tensile curve of polymer fibres between a strain of 0.005 and 0.025 [ 1 ]. Up to the yield point the fibre extension is practically elastic. For larger strains, the extension is composed of an elastic, viscoelastic and plastic contribution. The yield of the tensile curve is explained by a simple yield mechanism based on Schmid s law for shear deformation of the domains. This law states that, for an anisotropic material, plastic deformation starts at a critical value of the resolved shear stress, ry =/g, along a slip plane. It has been... [Pg.20]

The relation between the end points of the tensile curve, ab and eh (= b), can be calculated with Eqs. 9,23 and 24. This relation is now by definition taken as the fracture envelope. Note that these equations only hold for elastic deformation. In order to account for some viscoelastic and plastic deformation, a value gv is used, which is somewhat smaller than the value for elastic deformation g. The dashed curves in Figs. 8 and 9 are the calculated fracture envelopes (neglecting the chain extension) for the cellulose II and the POK fibres, respectively. These figures show a good agreement between the observed and calculated fracture points. [Pg.26]

Fig. 58 The rheological model of a polymer fibre consists of a series arrangement of an elastic tensile spring representing the chain modulus, ec, and a shear spring, g(t), with viscoelastic and plastic properties representing the intermolecular bonding... Fig. 58 The rheological model of a polymer fibre consists of a series arrangement of an elastic tensile spring representing the chain modulus, ec, and a shear spring, g(t), with viscoelastic and plastic properties representing the intermolecular bonding...
In order to simplify the discussion and keep the derivation of the formulae tractable, a fibre with a single orientation angle is considered. In a creep experiment the tensile deformation of the fibre is composed of an immediate elastic and a time-dependent elastic extension of the chain by the normal stress ocos20(f), represented by the first term in the equation, and of an immediate elastic, viscoelastic and plastic shear deformation of the domain by the shear stress, r =osin0(f)cos0(f), represented by the second term in Eq. 106. [Pg.83]

For the investigation of the time and the temperature dependence of the fibre strength it is necessary to have a theoretical description of the viscoelastic tensile behaviour of polymer fibres. Baltussen has shown that the yielding phenomenon, the viscoelastic and the plastic creep of a polymer fibre, can be described by the Eyring reduced time (ERT) model [10]. The shear deformation of a domain brings about a mutual displacement of adjacent chains, the... [Pg.88]

Binary fluorides, methods of preparing noble-gas, 77 335-336 Binary heterogeneous polymer blends compliance of, 20 347-348 moduli of, 20 346-347 nonlinear viscoelastic behavior of, 20 348 yield and/or tensile strength of, 20 348-349... [Pg.99]


See other pages where Tensile viscoelasticity is mentioned: [Pg.530]    [Pg.530]    [Pg.136]    [Pg.312]    [Pg.151]    [Pg.153]    [Pg.192]    [Pg.195]    [Pg.201]    [Pg.350]    [Pg.527]    [Pg.374]    [Pg.498]    [Pg.56]    [Pg.115]    [Pg.373]    [Pg.877]    [Pg.155]    [Pg.43]    [Pg.206]    [Pg.27]    [Pg.82]    [Pg.84]    [Pg.89]    [Pg.286]   
See also in sourсe #XX -- [ Pg.530 ]




SEARCH



© 2024 chempedia.info