Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelasticity characteristic times

Whether a viscoelastic material behaves as a viscous Hquid or an elastic soHd depends on the relation between the time scale of the experiment and the time required for the system to respond to stress or deformation. Although the concept of a single relaxation time is generally inappHcable to real materials, a mean characteristic time can be defined as the time required for a stress to decay to 1/ of its elastic response to a step change in strain. The... [Pg.176]

A parameter indicating whether viscoelastic effects are important is the Deborah number, which is the ratio of the characteristic relaxation time of the fluid to the characteristic time scale of the flow. For small Deborah numbers, the relaxation is fast compared to the characteristic time of the flow, and the fluid behavior is purely viscous. For veiy large Deborah numbers, the behavior closely resembles that of an elastic solid. [Pg.631]

Unfortunately, this group Db depends on the assignment of a single characteristic time to the fluid (perhaps a relaxation time). While this has led to some success, it appears to be inadequate for many viscoelastic materials which show different relaxation behaviour under differing conditions. [Pg.120]

Some information concerning the intramolecular relaxation of the hyperbranched polymers can be obtained from an analysis of the viscoelastic characteristics within the range between the segmental and the terminal relaxation times. In contrast to the behavior of melts with linear chains, in the case of hyperbranched polymers, the range between the distinguished local and terminal relaxations can be characterized by the values of G and G" changing nearly in parallel and by the viscosity variation having a frequency with a considerably different exponent 0. This can be considered as an indication of the extremely broad spectrum of internal relaxations in these macromolecules. To illustrate this effect, the frequency dependences of the complex viscosities for both linear... [Pg.25]

There are not a great number of studies on the viscoelastic behaviour of quasi-hard spheres. The studies of Mellema and coworkers13 shown in Figure 5.5 indicate the real and imaginary parts of the viscosity in a high-frequency oscillation experiment. Their data can be normalised to a characteristic time based on the diffusion coefficient given above. [Pg.158]

Temperature variations during the formation of LDPE foam sheet were investigated. A thermal model was coupled with a viscoelastic growth model, and an iterative finite difference technique was used to solve unsteady heat transfer equations and viscoelastic growth equations. The heat transfer characteristic time became comparable to the expansion time when the sheet thickness decreased to the millimetre range, during which foam thickness and density became sensitive to temperature effects. 12 refs. USA... [Pg.101]

Williams has derived the molecular weight and concentration dependence of a viscoelastic time constant t0 (actually the characteristic time governing the onset of shear rate dependence in the viscosity) from his theory (217-219). Employing a dimensional argument, he equates the parameters which control the shear rate dependence of chain configuration and the intermolecular correlation function. The result agrees with the observed form of characteristic relaxation time in concentrated systems [Eq.(6.62)] ... [Pg.95]

The Eyring analysis does not explicity take chain structures into account, so its molecular picture is not obviously applicable to polymer systems. It also does not appear to predict normal stress differences in shear flow. Consequently, the mechanism of shear-rate dependence and the physical interpretation of the characteristic time t0 are unclear, as are their relationships to molecular structure and to cooperative configurational relaxation as reflected by the linear viscoelastic behavior. At the present time it is uncertain whether the agreement with experiment is simply fortuitous, or whether it signifies some kind of underlying unity in the shear rate dependence of concentrated systems of identical particles, regardless of their structure and the mechanism of interaction. [Pg.144]

Deborah number De kca fluid relaxation time flow characteristic time Viscoelastic flow... [Pg.50]

Thixotropy is the tendency of certain substances to flow under external stimuli (e.g., mild vibrations). A more general property is viscoelasticity, a time-dependent transition from elastic to viscous behavior, characterized by a relaxation time. When the transition is confined to small regions within the bulk of a solid, the substance is said to creep. A substance which creeps is one that stretches at a time-dependent rate when subjected to constant stress and temperature. The approximately constant stretching rates at intermediate times are used to characterize the creeping characteristics of the material. [Pg.90]

However—and this is the third aspect—the characteristic lifetime of a hydrogen bond is very short (between 10 and 10 s) and this is why viscoelastic properties of a gel structure will never be observed even in short characteristic time experiments. The explanation of such a short time is that hydrogen bond lifetimes are determined by the proton dynamics [3,8]. In particular, large-amplitude librational movements take easily the proton from the region, between two oxygens, where the energy of the bond is sufficiently large. [Pg.57]

Perhaps the most important distinction between classical solids and classical liquids is that the latter quickly shape themselves to the container in which they reside, while the former maintain their shape indefinitely. Many complex fluids are intermediate between solid and liquid in that while they maintain their shape for a time, they eventually flowr They are solids at short times and liquids at long times hence, they are viscoelastic. The characteristic time required for them to change from solid to liquid varies from fractions of a second to days, or even years, depending on the fluid. Examples of complex fluids with long structural or molecular relaxation times include glass-forming liquids, polymer melts and solutions, and micellar solutions. [Pg.3]

If a given deformation is applied to a viscoelastic material, the stress slowly relaxes the characteristic time for this is called the relaxation time. The Deborah number (De) is defined as the ratio of this relaxation time over the observation time. For a solid De is very large, for a liquid very small, and for a viscoelastic material of order unity. It thus depends on the time scale of observation whether we call a material solid or liquid. Several foods appear to be solid at casual observation, but show flow during longer observation. [Pg.152]

This test method employs nonresonant forced vibration techniques for determining the complex viscosity (see below) and viscoelastic characteristics of thermoplastic resins as a function of frequency, strain amplitude, temperature, and time. A wide range of frequencies can be used, typically from 0.01 to 100 Hz. [Pg.631]

It should be noted here that in polymer rheology, for viscoelastic fluids the commonly used dimensionless parameter to characterize the ratio of elastic force to viscous force is the Deborah number denoted by the symbol De. This parameter is essentially just the Peclet number. In terms of characteristic times, it is equal to the ratio of the largest time constant of the molecular motions or other appropriate relaxation time of the fluid compared to the characteristic flow time. [Pg.267]

A physical insight into the viscoelastic character of a material can be obtained by examining the material response time. This can be illustrated by defining a characteristic time for the material — for example, the relaxation time for a Maxwell element, which is the time required for the stress in a stress relaxation experiment to decay to e (0.368) of its initial value. Materials that have low relaxation times flow easily and as such show relatively rapid stress decay. This, of course, is indicative of liquidlike behavior. On the other hand, those materials with long relaxation times can sustain relatively higher stress values. This indicates solidlike behavior. Thus, whether a viscoelastic material behaves as an elastic solid or a viscous liquid depends on the material response time and its relation to the time scale of the experiment or observation. This was first proposed by Marcus Reiner, who defined the ratio of the material response time to the experimental time scale as the Deborah number, D . That is. [Pg.410]


See other pages where Viscoelasticity characteristic times is mentioned: [Pg.86]    [Pg.181]    [Pg.33]    [Pg.93]    [Pg.174]    [Pg.518]    [Pg.136]    [Pg.98]    [Pg.117]    [Pg.283]    [Pg.138]    [Pg.68]    [Pg.103]    [Pg.205]    [Pg.86]    [Pg.57]    [Pg.246]    [Pg.142]    [Pg.514]    [Pg.431]    [Pg.187]    [Pg.136]    [Pg.192]    [Pg.213]    [Pg.285]    [Pg.780]    [Pg.780]    [Pg.482]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Mean characteristic time, viscoelasticity

Mean characteristic time, viscoelasticity materials

Time characteristic times

© 2024 chempedia.info