Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl ethers, substitution

A third mechanistically distinct [3 -1- 2] cycloaddition between vinyl ethers and vinyl-carbenoids was discovered and reported in 2001 [26]. This reaction is remarkable because when Rh2(S-DOSP)4 is used as the catalyst, the cis-cyclopentenes 142 are formed in up to 99% enantiomeric excess. The reaction occurs between vinylcarbenoids unsubstituted or alkyl-substituted at the vinyl terminus and vinyl ethers substituted with an aryl or vinyl group. Some illustrative examples are shown in Tab. 14.12. The reaction is considered to be a concerted process, which would be consistent with the highly stereoselective nature of the reaction [26]. Contrary to the [3-1-2] cycloaddition derived by means of vinylogous carbenoid reactivity, this latest [3 -1- 2] cycloaddition is not influenced by solvent effects. Due to steric demands on the carbenoid, the [3-1-2] cycloaddi-tion only occurs with cis-vinyl ethers. [Pg.323]

Although vinyl ether substitution generally accelerates the [4 + 2] cycloaddition, certain trisubstituted vinyl ethers decelerate the following [3 + 2] step electronically. Thus, in several reactions the disappearance of the starting... [Pg.537]

Under certain conditions, the /(-substitution products are obtained as major products[66]. Methyl vinyl ether reacts with bromonitrobenzene to give the f-methoxystyiene 64 in good yield in toluene at 120 "C by using Pd on carbon as... [Pg.137]

In early work, vinyl chloride had been heated with stoichiometric amounts of alkaU alkoxides in excess alcohol as solvent, giving vinyl ethers as products (210). Supposedly this involved a Williamson ether synthesis, where alkaU alkoxide and organic haUde gave an ether and alkaU haUde. However, it was observed that small amounts of acetylene were formed by dehydrohalogenation of vinyl chloride, and that this acetylene was consumed as the reaction proceeded. Hence acetylene was substituted for vinyl chloride and only catalytic amounts of alkaU were used. Vinylation proceeded readily with high yields (211). [Pg.114]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

The high reactivity of pyrroles to electrophiles is similar to that of arylamines and is a reflection of the mesomeric release of electrons from nitrogen to ring carbons. Reactions with electrophilic reagents may result in addition rather than substitution. Thus furan reacts with acetyl nitrate to give a 2,5-adduct (33) and in a similar fashion an adduct (34) is obtained from the reaction of ethyl vinyl ether with hydrogen bromide. [Pg.43]

Additions of elemental halogens to unsaturated compounds are among the most common preparations of halogenated fluoroorganics. The transformations are usually fairly clean and proceed in good yields. Besides the numerous examples of halogen addition tofluoroalkenes and fluoroalkyl-substituted alkenes, additions to perfliioropropyl vinyl ether [2] and fluormated styrenes [7, 4] have been reported. Both ionic and free-radical processes occur (equations 1 and 2)... [Pg.364]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

An alternative technique to NMR spectroscopy is chromatography. The partially functionalized sample is completely fimctionahzed with a group different from the one present, the product carefully de-polymerized, its structure examined with a chromatographic technique. For example, partially substituted CA was further derivatized with methyl vinyl ether, the product hydrolyzed, the monomers produced examined with gas chromatography [241]. HPLC has been advantageously applied for the determination of substitution pattern for CAs with DS 0.8 to 3.0, by employing the same approach, i.e., further derivatization of the partially derivatized polymer with methyl trifluoroacetate, followed by de-polymerization. The results obtained by this technique compared favorably with those obtained by NMR [242]. [Pg.140]

Intermolecular befera-Diels-Alder reactions of enamino ketones with highly substituted vinyl ethers. Effect of high pressure on the kinetics and diastereoselectivity [77]... [Pg.240]

Microwave-assisted Heck reaction of (hetero)aryl bromides with N,N-dimethyl-2-[(2-phenylvinyl)oxy]ethanamine, using Herrmann s palladacycle as a precatalyst, yielded the corresponding /3-(hetero)arylated Heck products in a good EjZ selectivity (Scheme 79) [90]. The a/yd-regioselectivity can be explained by the chelation control in the insertion step. This selectivity is better than 10/90 when no severe steric hindrance is introduced in the (hetero)aryl bromides. The process does not require an inert atmosphere. There is evidence that a Pd(0)/Pd(II)- and not Pd(II)/Pd(IV)-based catalytic cycle is involved. Similarly, other j6-amino-substituted vinyl ethers such as... [Pg.196]

The orbital phase theory was applied to the conformations of alkenes (a- and P-substituted enamines and vinyl ethers) [31] and alkynes [32], The conformational stabilities of acetylenic molecules are described here. [Pg.104]

Photoaddhion of electron donor olefins such as vinyl ethers and stilbene to variously methyl and halogeno-substituted 1,4-benzoquinones resulted in the formation of dihydrobenzofurans via a dienone-phenol rearrangement of the primary product spirooxetanes <96H(43)619>. High-temperature water seems to be an alternative to use of acid catalysts or organic solvents by the cyclization of allyl phenyl ethers to dihydrobenzofurans <96JOC7355>. [Pg.143]

Another important type of reactivity of palladium, namely oxidative addition to Pd(0), is the foundation for several methods of forming carbon-carbon bonds. Aryl126 and alkenyl127 halides react with alkenes in the presence of catalytic amounts of palladium to give net substitution of the halide by the alkenyl group. The reaction, known as the Heck reaction,128 is quite general and has been observed for simple alkenes, aryl-substituted alkenes, and substituted alkenes such as acrylate esters, vinyl ethers, and A-vinylamides.129... [Pg.715]

The reactivity of the prototype o-QM as heterodiene in Diels-Alder cycloaddition reactions with several substituted alkenes such as methyl vinyl ether (MVE), styrene,... [Pg.44]

Better yields result from more nucleophilic styrene dienophiles. For example, method F proves successful with the benzaldehyde 5 and a-methoxystyrene to afford the benzopyran 52 in a 55% yield (Fig. 4.28).27 The preferred diastereomer reflects an endo orientation with the more reactive moiety, which in this case is the vinyl ether portion of the dienophile. However, the diastereoselectivity for this and other 1,1-substituted alkenes is less than that for the corresponding mono-substituted systems. [Pg.104]

The preparation of resin-bound nitroalkenes via a microwave-assisted Knoevenagel reaction of resin-bound nitroacetic acid with aryl and alkyl substituted aldehydes is reported. The potential of these resin-bound nitroalkenes for application in combinatorial chemistry is demonstrated by a Diels-Alder reaction with 2,3-dimethylbutadiene (Scheme 8.9). It is also used for one-pot three-component tandem [4+2]/[3+2] reactions with ethyl vinyl ether and styrene 46... [Pg.243]

Extension of this tandem process to create five contiguous stereogenic centers has been accomplished by using 2-substituted vinyl ethers (Eq. 8.114).178 The results for the cycloaddition... [Pg.287]

Some remarks concerning the scope of the cobalt chelate catalysts 207 seem appropriate. Terminal double bonds in conjugation with vinyl, aryl and alkoxy-carbonyl groups are cyclopropanated selectively. No such reaction occurs with alkyl-substituted and cyclic olefins, cyclic and sterically hindered acyclic 1,3-dienes, vinyl ethers, allenes and phenylacetylene95). The cyclopropanation of electron-poor alkenes such as acrylonitrile and ethyl acrylate (optical yield in the presence of 207a r 33%) with ethyl diazoacetate deserve notice, as these components usually... [Pg.165]

Different rate-determining steps are observed for the acid-catalyzed hydration of vinyl ethers (alkene protonation, ks kp) and hydration of enamines (addition of solvent to an iminium ion intermediate, ks increasing stabilization of a-CH substituted carbocations by 71-electron donation from an adjacent electronegative atom results in a larger decrease in ks for nucleophile addition of solvent than in kp for deprotonation of the carbocation by solvent. [Pg.112]

Examples of the behavior of other substituted vinyl substrates upon exposure to the action of trifluoroacetic acid and triethylsilane are known. For example, -butyl vinyl ether, when reacted at 50° for 10 hours, gives -butyl ethyl ether in 80% yield (Eq. 65).234 In contrast, -butyl vinyl thioether gives only a 5% yield of n-butyl ethyl sulfide product after 2 hours and 15% after 20 horns of reaction.234 It is suggested that this low reactvity is the result of the formation of a very stable sulfur-bridged carbocation intermediate that resists attack by the organosilicon hydride (Eq. 66). [Pg.35]


See other pages where Vinyl ethers, substitution is mentioned: [Pg.430]    [Pg.209]    [Pg.48]    [Pg.430]    [Pg.209]    [Pg.48]    [Pg.136]    [Pg.293]    [Pg.58]    [Pg.166]    [Pg.83]    [Pg.360]    [Pg.537]    [Pg.3]    [Pg.220]    [Pg.128]    [Pg.137]    [Pg.64]    [Pg.201]    [Pg.66]    [Pg.256]    [Pg.87]    [Pg.175]    [Pg.278]    [Pg.278]    [Pg.74]   


SEARCH



2- Alkoxycarbonyl-substituted propargyl vinyl ethers

2-Alkoxycarbonyl-substituted allyl vinyl ethers

Ethers, substituted

Reaction with Substituted Vinyl Ethers

Silyl enol ethers vinyl substitution

Substituted vinyl ethers

Substituted vinyl ethers

Substitution, vinyl

Vinyl ethers, cycloadditions with 3-substituted 2-pyrones

Vinyl ethers, substitution reactions

Vinylic substitution

© 2024 chempedia.info