Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor phase pressure

A computer program (TWOPHASE) was developed that uses the Lockliart-Matinelli correlation and determines the total pressure drop based on the vapor phase pressure drop. The total length of the unit depends on the nature of the Reynolds numher. The program also calculates the gas-liquid phase regime employing a modified Baker s map [33]. Table 7-13 gives the results of the two-phase pressure drop. [Pg.615]

Eq. (22) can be recast using vapor phase pressure as the driving force behind the mass transfer, using the ideal gas relationship. [Pg.1439]

Thus knowing the pressure difference for pore fluid, integration of Eq.(2) and rearrangement will yield the following equation to describe the relation between freezing point and the vapor-phase pressure on the bulk phase diagram. [Pg.39]

The effect of equilibrium vapor-phase pressure is examined employing a molecular dynamics (MD) technique in a unit cell with imaginary gas phase. [Pg.40]

The MD simulations showed liquid-solid phase transitions, at a constant temperature, with the variation in the equilibrium vapor-phase pressure below saturated one, and prove the importance of the tensile effect on freezing in nanopores. The capillary effect on shift in freezing point was successfully described by a model based on the concept of pressure felt by the pore fluid. [Pg.40]

Various studies have been conducted in predicting the two-phase frictional pressure losses in pipes. The Lockhart-Martinelli correlations [19] shown in Figure 3-7 are employed. The basis of the correlations is that the two-phase pressure drop is equal to the single-phase pressure drop of either phase multiplied by a factor that is derived from the singlephase pressure drops of the two-phases. The total pressure drop is based on the vapor-phase pressure drop. The pressure drop computation is based on the following assumptions ... [Pg.176]

The method proposed in this monograph has a firm thermodynamic basis. For vapo/-liquid equilibria, the method may be used at low or moderate pressures commonly encountered in separation operations since vapor-phase nonidealities are taken into account. For liquid-liquid equilibria the effect of pressure is usually not important unless the pressure is very large or unless conditions are near the vapor-liquid critical region. [Pg.2]

In vapor-liquid equilibria, if one phase composition is given, there are basically four types of problems, characterized by those variables which are specified and those which are to be calculated. Let T stand for temperature, P for total pressure, for the mole fraction of component i in the liquid phase, and y for the mole fraction of component i in the vapor phase. For a mixture containing m components, the four types can be organized in this way ... [Pg.3]

In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

In Chapter 2 we discuss briefly the thermodynamic functions whereby the abstract fugacities are related to the measurable, real quantities temperature, pressure, and composition. This formulation is then given more completely in Chapters 3 and 4, which present detailed material on vapor-phase and liquid-phase fugacities, respectively. [Pg.5]

Equation (1) is of little practical use unless the fuga-cities can be related to the experimentally accessible quantities X, y, T, and P, where x stands for the composition (expressed in mole fraction) of the liquid phase, y for the composition (also expressed in mole fraction) of the vapor phase, T for the absolute temperature, and P for the total pressure, assumed to be the same for both phases. The desired relationship between fugacities and experimentally accessible quantities is facilitated by two auxiliary functions which are given the symbols (f... [Pg.14]

Equation (12), applicable at low or moderate pressures, is used in this monograph for typical vapor mixtures. However, when the vapor phase contains a strongly dimerizing component such as carboxylic acid. Equation (7) is not applicable and... [Pg.16]

At pressures to a few bars, the vapor phase is at a relatively low density, i.e., on the average, the molecules interact with one another less strongly than do the molecules in the much denser liquid phase. It is therefore a common simplification to assume that all the nonideality in vapor-liquid systems exist in the liquid phase and that the vapor phase can be treated as an ideal gas. This leads to the simple result that the fugacity of component i is given by its partial pressure, i.e. the product of y, the mole fraction of i in the vapor, and P, the total pressure. A somewhat less restrictive simplification is the Lewis fugacity rule which sets the fugacity of i in the vapor mixture proportional to its mole fraction in the vapor phase the constant of proportionality is the fugacity of pure i vapor at the temperature and pressure of the mixture. These simplifications are attractive because they make the calculation of vapor-liquid equilibria much easier the K factors = i i ... [Pg.25]

The fugacity fT of a component i in the vapor phase is related to its mole fraction y in the vapor phase and the total pressure P by the fugacity coefficient ... [Pg.26]

The fugacity coefficient is a function of temperature, total pressure, and composition of the vapor phase it can be calculated from volumetric data for the vapor mixture. For a mixture containing m components, such data are often expressed in the form of an equation of state explicit in the pressure... [Pg.26]

Two additional illustrations are given in Figures 6 and 7 which show fugacity coefficients for two binary systems along the vapor-liquid saturation curve at a total pressure of 1 atm. These results are based on the chemical theory of vapor-phase imperfection and on experimental vapor-liquid equilibrium data for the binary systems. In the system formic acid (1) - acetic acid (2), <() (for y = 1) is lower than formic acid at 100.5°C has a stronger tendency to dimerize than does acetic acid at 118.2°C. Since strong dimerization occurs between all three possible pairs, (fij and not... [Pg.35]

While vapor-phase corrections may be small for nonpolar molecules at low pressure, such corrections are usually not negligible for mixtures containing polar molecules. Vapor-phase corrections are extremely important for mixtures containing one or more carboxylic acids. [Pg.38]

As discussed in Chapter 3, at moderate pressures, vapor-phase nonideality is usually small in comparison to liquid-phase nonideality. However, when associating carboxylic acids are present, vapor-phase nonideality may dominate. These acids dimerize appreciably in the vapor phase even at low pressures fugacity coefficients are well removed from unity. To illustrate. Figures 8 and 9 show observed and calculated vapor-liquid equilibria for two systems containing an associating component. [Pg.51]

Using UNIQUAC, Table 2 summarizes vapor-liquid equilibrium predictions for several representative ternary mixtures and one quaternary mixture. Agreement is good between calculated and experimental pressures (or temperatures) and vapor-phase compositions. ... [Pg.53]

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

In Equation (24), a is the estimated standard deviation for each of the measured variables, i.e. pressure, temperature, and liquid-phase and vapor-phase compositions. The values assigned to a determine the relative weighting between the tieline data and the vapor-liquid equilibrium data this weighting determines how well the ternary system is represented. This weighting depends first, on the estimated accuracy of the ternary data, relative to that of the binary vapor-liquid data and second, on how remote the temperature of the binary data is from that of the ternary data and finally, on how important in a design the liquid-liquid equilibria are relative to the vapor-liquid equilibria. Typical values which we use in data reduction are Op = 1 mm Hg, = 0.05°C, = 0.001, and = 0.003... [Pg.68]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

The computation of pure-component and mixture enthalpies is implemented by FORTRAN IV subroutine ENTH, which evaluates the liquid- or vapor-phase molar enthalpy for a system of up to 20 components at specified temperature, pressure, and composition. The enthalpies calculated are in J/mol referred to the ideal gas at 300°K. Liquid enthalpies can be determined either with... [Pg.93]

This chapter presents quantitative methods for calculation of enthalpies of vapor-phase and liquid-phase mixtures. These methods rely primarily on pure-component data, in particular ideal-vapor heat capacities and vapor-pressure data, both as functions of temperature. Vapor-phase corrections for nonideality are usually relatively small. Liquid-phase excess enthalpies are also usually not important. As indicated in Chapter 4, for mixtures containing noncondensable components, we restrict attention to liquid solutions which are dilute with respect to all noncondensable components. [Pg.93]

The sum of the squared differences between calculated and measures pressures is minimized as a function of model parameters. This method, often called Barker s method (Barker, 1953), ignores information contained in vapor-phase mole fraction measurements such information is normally only used for consistency tests, as discussed by Van Ness et al. (1973). Nevertheless, when high-quality experimental data are available. Barker s method often gives excellent results (Abbott and Van Ness, 1975). [Pg.97]

At low pressures, it is often permissible to neglect nonidealities of the vapor phase. If these nonidealities are not negligible, they can have the effect of introducing a nonrandom trend into the plotted residuals similar to that introduced by systematic error. Experience here has shown that application of vapor-phase corrections for nonidealities gives a better representation of the data by the model, oven when these corrections... [Pg.106]

These were converted from vapor pressure P to fugacity using the vapor-phase corrections (for pure components), discussed in Chapter 3 then the Poynting correction was applied to adjust to zero pressure ... [Pg.138]

T were eliminated beyond that point, the vapor-phase correction, as calculated here, is inadequate and the liquid molar volume is no longer constant with pressure. [Pg.139]

VPLQFT is a computer program for correlating binary vapor-liquid equilibrium (VLE) data at low to moderate pressures. For such binary mixtures, the truncated virial equation of state is used to correct for vapor-phase nonidealities, except for mixtures containing organic acids where the "chemical" theory is used. The Hayden-0 Connell (1975) correlation gives either the second virial coefficients or the dimerization equilibrium constants, as required. [Pg.211]

VAPOR PRESSURE EQUATION AND IDEAL VAPOR PHASE... [Pg.229]


See other pages where Vapor phase pressure is mentioned: [Pg.1291]    [Pg.608]    [Pg.608]    [Pg.1114]    [Pg.411]    [Pg.234]    [Pg.31]    [Pg.31]    [Pg.32]    [Pg.330]    [Pg.258]    [Pg.1295]    [Pg.234]    [Pg.4246]    [Pg.1291]    [Pg.608]    [Pg.608]    [Pg.1114]    [Pg.411]    [Pg.234]    [Pg.31]    [Pg.31]    [Pg.32]    [Pg.330]    [Pg.258]    [Pg.1295]    [Pg.234]    [Pg.4246]    [Pg.14]    [Pg.26]    [Pg.87]    [Pg.99]    [Pg.112]    [Pg.218]   
See also in sourсe #XX -- [ Pg.277 , Pg.279 , Pg.339 , Pg.346 , Pg.347 , Pg.349 , Pg.350 ]




SEARCH



High pressure, phase equilibria vapor-liquid equilibrium

Liquid aerosol-phase vapor pressure

Osmotic pressure vapor phase osmometry

Phase change vapor pressure

Phase diagrams vapor-pressure curves

Phase, vapor pressure and

Pressure, vapor condensed phase

Pressure-temperature-concentration phase vapor-liquid equilibrium

Skill 15.5 Analyzing vapor pressure curves and phase diagrams

Vapor pressure phase diagrams

© 2024 chempedia.info