Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography validation

Natural gas analysis has considerable economic importance. In fact, commercial contracts increasingly specify not just volume but the calorific or heating value as well. Today the calorific value of a natural gas calculated from its composition obtained by chromatography is recognized as valid. There is therefore a large research effort devoted to increasing the precision of this analysis. [Pg.71]

The chromatography literature contains a vast amount of dispersion data for all types of chromatography and, in particular, much of the data pertains directly to GC and LC. Unfortunately, almost all the data is unsuitable for validating one particular dispersion equation as opposed to another. There are a number of reasons for this firstly, the necessary supporting data (e.g., diffusivity data for the solutes in the solvents employed as the mobile phase, accurate distribution and/or capacity factor constants (k")) are not available secondly, the accuracy and precision of much of the data are inadequate, largely due to the use of inappropriate apparatus with high extracolumn dispersion. [Pg.315]

Sofer, G. and Hagel L. (1997). Handbook of Process Chromatography, A Guide to Optimization, Scale-up and Validation, Academic Press, London. [Pg.73]

A further thirty years were to pass before Kuhn and his co-workers (3) successfully repeated Tswetf s original work and separated lutein and xanthine from a plant extract. Nevertheless, despite the success of Kuhn et al and the validation of Tswett s experiments, the new technique attracted little interest and progress continued to be slow and desultory. In 1941 Martin and Synge (4) introduced liquid-liquid chromatography by supporting the stationary phase, in this case water, on silica in the form of a packed bed and used it to separate some acetyl amino acids. [Pg.3]

Bier, M Mosher, RA Palusinski, OA, Computer Simulation and Experimental Validation of Isoelectric Focusing in Ampholine-Free Systems, Journal of Chromatography 211, 313, 1981. Bier, M Palusinski, OA Mosher, RA Saville, DA, Electrophoresis Mathematical Modeling and Computer Simulation, Science 219, 1281, 1983. [Pg.608]

Section I of this book includes chapters on the principles and practice of PLC. After this introductory Chapter 1, Chapter 2 provides information on efforts undertaken to date in order to establish the theoretical foundations of PLC. With growing availability and popularity of modem computer-aided densitometers, separation results can be obtained in digital form as a series of concentration profiles that can be relatively easily assessed and processed. From these, relevant conclusions can be drawn in exactly the same manner as in automated column chromatographic techniques. Efforts undertaken to build a theoretical foundation of PLC largely consist of adaptation of known strategies (with their validity confirmed in preparative column liquid chromatography) to the working conditions of PLC systems. [Pg.8]

One of the most important problems of planar chromatography is that of the optimization of solvent systems for the separation of mixtures of different samples. An analyst is interested in obtaining the expected result using a minimum number of experiments. Snyder has introduced a new system for solvent classification that permits a logical selection of solvents both in term of polarity indices (F ) and selectivity parameters (Xj), proving theoretically the validity of such universal solvent systems [18,38,41,42]. [Pg.79]

The requirements regarding commodities which are difficult to analyze are also not very clear. The listed crops do not cause difficulties in each kind of determination [e.g., brassica or bulb vegetables in gas chromatography/mass spectrometry (GC/MS)]. On the other hand, different species of the same crop may have different interference peaks, which may or may not affect quantitation. Presumably, the easiest approach is to perform additional validations, even if the final extracts are not difficult to analyze. In the author s experience, validations should generally include hops and tobacco, if the pesticide is used in these crops. [Pg.107]

For multi-analyte and/or multi-matrix methods, it is not possible to validate a method for all combinations of analyte, concentration and type of sample matrix that may be encountered in subsequent use of the method. On the other hand, the standards EN1528 andEN 12393 consist of a range of old multi-residue methods. The working principles of these methods are accepted not only in Europe, but all over the world. Most often these methods are based on extractions with acetone, acetonitrile, ethyl acetate or n-hexane. Subsequent cleanup steps are based on solvent partition steps and size exclusion or adsorption chromatography on Florisil, silica gel or alumina. Each solvent and each cleanup step has been successfully applied to hundreds of pesticides and tested in countless method validation studies. The selectivity and sensitivity of GC combined with electron capture, nitrogen-phosphorus, flame photometric or mass spectrometric detectors for a large number of pesticides are acceptable. [Pg.113]

These authors noted the potential for the assay to underestimate the concentration of TSR due to decreased binding of metabolites relative to parent spinosad. However, the major residue found was parent spinosad, so underestimation of residues is not likely to be problematic. Overall, this method was validated in 34 matrices and showed excellent agreement with results obtained with a high-performance liquid chromatography/ultraviolet detection (HPLC/UV) method. ... [Pg.724]

Full acceptance of HPLC/MS methods by the US EPA OPP as enforcement methods occurred between 1998 and 2001. For example, in 1998, the EPA OPP accepted HPLC/MS (without MS/MS) methods as primary enforcement methods, and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) only was suitable for confirmatory methods. However, in 2001, HPLC/MS/MS methods also became acceptable for primary enforcement. Table 4 summarizes the types of methods that were validated by the EPA OPP method validation program, for both food tolerance enforcement methods and environmental chemistry methods. [Pg.766]

For method tryout, run a control sample and two fortifications from each site. One fortification should be done at the LOQ and the other at the highest expected residue level, perhaps 1000 x LOQ. If the recoveries are within the acceptable range of 70-120% and there are no interferences, proceed with the method validation. If interferences are present which prevent quantitation of the analyte, try additional cleanup steps with SPE or use a more selective detection method such as liquid chromatography/mass spectrometry (LC/MS). [Pg.969]

Validations fall into two types prospective and retrospective. In prospective validation (see flow chart in Figure 2) the validation is done in a sequential manner, involving installation qualification and operational qualification (IQ/OQ) of equipment (e.g., chromatography instrumentation or column hardware). Appropriate calibrations accompany the IQ/OQ. Process qualification, or PQ, involves formal review and approval of a PQ protocol, execution of this protocol, and issuance of a formal PQ report which includes data analysis and recommendations (i.e., approval/certification of the process). If the process is not approved, the report may recommend a redesign or redoing of the validation protocol and, in some cases, a return of the process to process development for further optimization. [Pg.118]

The design of simulated moving bed chromatography and its application to the separation of cycloheptanone and cyclopentanone as test substances to validate the system for subsequent chiral chromatography has been described.27 Briefly, eight silica-packed columns were hooked up in series to form a cyclic flow path. On the first pair, preliminary separation of the components was performed, with the less-retained raffinate being directed to waste. Following the second pair of columns, eluent was added. After the... [Pg.133]


See other pages where Chromatography validation is mentioned: [Pg.770]    [Pg.71]    [Pg.378]    [Pg.740]    [Pg.5]    [Pg.34]    [Pg.531]    [Pg.264]    [Pg.176]    [Pg.278]    [Pg.1]    [Pg.304]    [Pg.375]    [Pg.33]    [Pg.17]    [Pg.158]    [Pg.415]    [Pg.205]    [Pg.79]    [Pg.94]    [Pg.49]    [Pg.425]    [Pg.566]    [Pg.647]    [Pg.697]    [Pg.714]    [Pg.725]    [Pg.758]    [Pg.1058]    [Pg.1058]    [Pg.101]    [Pg.116]    [Pg.117]    [Pg.120]    [Pg.127]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



High-performance liquid chromatography method validation

High-performance liquid chromatography method validation process

Liquid chromatography validation

Liquid chromatography—mass validation

Thin-layer chromatography validation

Thin-layer chromatography validation procedures

© 2024 chempedia.info