Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica column packing

Fig. 11A-D. Chromatogram of PMMA 280 kDa injected in eluent the detected by A RI detector, B viscosimeter. Mobile phase MEK/cyclohexane. Column packing Silica gel. From [50] with permission. A chromatogram of polystyrene sample injected in dichloromethane detected by C UV, D ELSD. Mobile phase Dichloromethane/n-hexane. Column packing Silica gel [151]... Fig. 11A-D. Chromatogram of PMMA 280 kDa injected in eluent the detected by A RI detector, B viscosimeter. Mobile phase MEK/cyclohexane. Column packing Silica gel. From [50] with permission. A chromatogram of polystyrene sample injected in dichloromethane detected by C UV, D ELSD. Mobile phase Dichloromethane/n-hexane. Column packing Silica gel [151]...
Figure 16. Chromatogram obtained from the moving chain detector. Sample mineral oil and surfactant, solvent n-heptane, ethyl alcohol, column 2 x 300 mm, column packing silica gel, flow rate 0.7 ml/min, chart speed 24 cm/min, evaporator temperature 150°C, N2 flow rate 30 ml/min, H2 flow rate 25 ml/min, O2 flow rate 30 ml/min. Figure 16. Chromatogram obtained from the moving chain detector. Sample mineral oil and surfactant, solvent n-heptane, ethyl alcohol, column 2 x 300 mm, column packing silica gel, flow rate 0.7 ml/min, chart speed 24 cm/min, evaporator temperature 150°C, N2 flow rate 30 ml/min, H2 flow rate 25 ml/min, O2 flow rate 30 ml/min.
Column packing silica gel AgNOs-oxydipropionitrile on support HMPA on support hexadecane-squalane on support... [Pg.376]

In liquid-solid adsorption chromatography (LSC) the column packing also serves as the stationary phase. In Tswett s original work the stationary phase was finely divided CaCOa, but modern columns employ porous 3-10-)J,m particles of silica or alumina. Since the stationary phase is polar, the mobile phase is usually a nonpolar or moderately polar solvent. Typical mobile phases include hexane, isooctane, and methylene chloride. The usual order of elution, from shorter to longer retention times, is... [Pg.590]

Two classes of micron-sized stationary phases have been encountered in this section silica particles and cross-linked polymer resin beads. Both materials are porous, with pore sizes ranging from approximately 50 to 4000 A for silica particles and from 50 to 1,000,000 A for divinylbenzene cross-linked polystyrene resins. In size-exclusion chromatography, also called molecular-exclusion or gel-permeation chromatography, separation is based on the solute s ability to enter into the pores of the column packing. Smaller solutes spend proportionally more time within the pores and, consequently, take longer to elute from the column. [Pg.593]

Should be distd under reduced pressure under nitrogen and stored in the dark. Purified via the nitrosochloride [Waterman et al. Reel Trav Chim Pays-Bas 48 1191 7929]. For purification of optically active forms see Lynn [J Am Chem Sac 91 361 1919]. Small quantities (0.5mL) have been purified by GLC using helium as carrier gas and a column at 90 packed with 20 wt% of polypropylene sebacate on a Chromosorb support. Larger quantities were fractionally distd under reduced pressure in a column packed with stainless steel gauze spirals. Material could be dried with CaH2 or sodium, and stored in a refrigerator CaS04 and silica gel were not satisfactory because they induced spontaneous isomerisation. [Bates, Best and Williams 7 C/iem Soc 1521 7962.]... [Pg.336]

Tetramethylsilane (TMS) [75-76-3] M 88.2, b 26.3, n 1.359, d 0.639. Distilled from cone H2SO4 (after shaking with it) or LiAlH4, through a 5ft vacuum-jacketted column packed with glass helices into an ice-cooled condenser, then percolated through silica gel to remove traces of halide. [Pg.482]

It is a common procedure to assume certain conditions for the chromatographic system and operating conditions and, as a result, simplify equations (20) and (21). However, in many cases the assumptions can easily be over-optimistic, to say the least. It is necessary, therefore, to carefully consider the conditions that may allow such simplifying procedures and take steps to ensure that such conditions are carefully met when such expressions are used in practice. Now, the relative magnitudes of the resistance to mass transfer terms will vary with the type of columns (packed or capillary), the type of chromatography (GC or LC) and the type of particle, i.e., porous or microporous (diatomaceous support or silica gel). [Pg.278]

High-performance size exclusion chromatography is used for the characterization of copolymers, as well as for biopolymers (3). The packings for analyses of water-soluble polymers mainly consist of 5- to 10-/Am particles derived from deactivated silica or hydrophilic polymeric supports. For the investigation of organosoluble polymers, cross-linked polystyrene beads are still the column packing of choice. [Pg.219]

Inorganic packings (silica, alumina, etc.) are very stable (yet brittle) and show very high pore volumes (i.e, efficiency). However, their chemical stability is very limited and the surface is very active (this is also true for reversed-phase columns), allowing their use in special applications only. [Pg.270]

The elution behavior of various polymers near their critical adsorption point with silica gel packings and various eluents has been studied (12). It was of interest to apply hybrid column systems composed of active ( critical ) packings (silica gels) in combination with nonactive (nonadsorptive) PS/DVB and DVB-based gels. Some PS/DVB and DVB gels exhibited rather strong... [Pg.447]

The nonporous spherical gels for PCHdC are often specially prepared for research purposes. However, nonporous polystyrene/divinylbenzene beads. Solid Bead, can be obtained in various particle sizes from Jordi Associates, Inc. (Bellingham, MA). Columns packed with these gels can be used for HdC of the polymers that are currently analyzed using polystyrene/divinylbenzene SEC columns. Fumed silica nanospheres are offered by Cabot (Tuscola, IL) (17), and nonporous silica (NPS) microspheres are offered by Micra Scientific, Inc. (Northbrook, IL). These nonporous silica gels may also be used for HdC. [Pg.605]

Preparation of cholesta-5,7-diene-ia,3/3-diol a solution of 500 mg of the 1,4-cyclized adduct of cholesta-5,7-dien-3/3-ol-ia,2a-epoxideand 4-phenyl-1,2,4-triazoline-3,5-dione in 40 ml of tetrahydrofuran is added dropwise under agitation to a solution of 600 mg of lithium aluminum hydride in 30 ml of THF. Then, the reaction mixture liquid Is gently refluxed and boiled for 1 hour and cooled, and a saturated aqueous solution of sodium sulfate is added to the reaction mixture to decompose excessive lithium aluminum hydride. The organic solvent layer is separated and dried, and the solvent Is distilled. The residue Is purified by chromatography using a column packed with silica gel. Fractions eluted with ether-hexane (7 3 v/v) are collected, and recrystallization from the methanol gives 400 mg of cholesta-5,7-diene-la, 3/3-diol. [Pg.36]

The combined acetone extracts were extracted six times with one-fourth volume of ethylene dichloride and the ethylene dichloride extract was evaporated under vacuum to leave the steroid residue. This steroid residue was taken up in a minimum of methylene chloride and applied to the top of a column packed with 30 grams of silica which had been previously triturated with 21 ml of ethylene glycol. Then various developing mixtures, saturated with ethylene glycol, were passed over the column. Cuts were made as each steroid was eluted as determined by the lowering of the absorption of light at 240 mp on the automatic chromatographic fraction cutter. [Pg.777]

C. Isolation and purification of XK-62-2 100 g of the white powder obtained in the above step B are placed to form a thin, uniform layer on the upper part of a 5 cm0X 150 cm column packed with about 3 kg of silica gel advancely suspended in a solvent of chloroform, isopropanol and 17% aqueous ammonia (2 1 1 by volume). Thereafter, elution is carried out with the same solvent at a flow rate of about 250 ml/hour. The eluate is separated in 100 ml portions. The active fraction is subjected to paper chromatography to examine the components eluted. XK-62-2 is eluted in fraction Nos. 53-75 and gentamicin Cja is eluted in fraction Nos. 85-120. The fraction Nos. 53-75 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate Is then dissolved in a small amount of water. After freeze-drying the solution, about 38 g of a purified preparate of XK-62-2 (free base) is obtained. The preparate has an activity of 950 units/mg. Likewise, fraction Nos. 85-120 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate is then dissolved in a small amount of water. After freeze-drying the solution, about 50 g of a purified preparate of gentamicin Cja (free base) is obtained. [Pg.1024]

This temperature is gradually raised to 95°C and the mixture kept at this temperature for 1 hour. The mixture is allowed to cool and added to 2 liters of water. The aqueous layer is extracted with ether, the ether solution washed twice with saturated sodium chloride solution, 5% Na2C03 solution, water, and then dried. The ether filtrate is concentrated with 200 grams silica-gel, and added to a five pound silica-gel column packed with 5% ether-petroleum ether. The column is eluted with 5 to 10% ether-petroleum ether and followed by TLC to give 6-fluoro-2-methylindanone. [Pg.1426]

Woelm nylon column DCC-5 was used, giving a packed column of silica gel 66-67 cm. high and 32 mm. in diameter. [Pg.80]

Unfortunately, exclusion chromatography has some inherent disadvantages that make its selection as the separation method of choice a little difficult. Although the separation is based on molecular size, which might be considered an ideal rationale, the total separation must be contained in the pore volume of the stationary phase. That is to say all the solutes must be eluted between the excluded volume and the dead volume, which is approximately half the column dead volume. In a 25 cm long, 4.6 mm i.d. column packed with silica gel, this means that all the solutes must be eluted in about 2 ml of mobile phase. It follows, that to achieve a reasonable separation of a multi-component mixture, the peaks must be very narrow and each occupy only a few microliters of mobile phase. Scott and Kucera (9) constructed a column 14 meters long and 1 mm i.d. packed with 5ja... [Pg.36]

The Separation of Some Alkyl Benzenes by Exclusion Chromatography Employing a 650,000 Theoretical Plate Column Packed with Silica Gel... [Pg.37]

The analysis demonstrates the elegant use of a very specific type of column packing. As a result, there is no sample preparation, so after the serum has been filtered or centrifuged, which is a precautionary measure to protect the apparatus, 10 p.1 of serum is injected directly on to the column. The separation obtained is shown in figure 13. The stationary phase, as described by Supelco, was a silica based material with a polymeric surface containing dispersive areas surrounded by a polar network. Small molecules can penetrate the polar network and interact with the dispersive areas and be retained, whereas the larger molecules, such as proteins, cannot reach the interactive surface and are thus rapidly eluted from the column. The chemical nature of the material is not clear, but it can be assumed that the dispersive surface where interaction with the small molecules can take place probably contains hydrocarbon chains like a reversed phase. [Pg.225]


See other pages where Silica column packing is mentioned: [Pg.811]    [Pg.811]    [Pg.589]    [Pg.438]    [Pg.121]    [Pg.130]    [Pg.185]    [Pg.196]    [Pg.215]    [Pg.255]    [Pg.289]    [Pg.297]    [Pg.318]    [Pg.322]    [Pg.104]    [Pg.76]    [Pg.94]    [Pg.447]    [Pg.4]    [Pg.21]    [Pg.29]    [Pg.29]    [Pg.324]    [Pg.35]    [Pg.56]    [Pg.307]    [Pg.223]    [Pg.143]    [Pg.58]    [Pg.68]    [Pg.38]    [Pg.139]   
See also in sourсe #XX -- [ Pg.316 ]

See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Column packings silica morphology

Fused-silica packed columns

Packed columns

Packed columns, packing

Packed fused silica capillary columns

Silica columns

Silica supports column packing structure

© 2024 chempedia.info