Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vacuum systems Pressure drop

It is essential to realistically establish the condensing conditions of the distillation overhead vapors, and any limitations on bottoms temperature at an estimated pressure drop through the system. Preliminary calculations for the number of trays or amoimt of packing must be performed to develop a fairly reasonable system pressure drop. With this accomplished, the top and bottom column conditions can be established, and more detailed calculations performed. For trays this can be 0.1 psi/actu-al tray to be installed [149] whether atmospheric or above, and use 0.05 psi/tray equivalent for low vacuum (not low absolute pressure). [Pg.19]

Total head, centrifugal pumps, 180, 183 Discharge, 205 Head curve, 198 Suction head, 184, 186 Suction lift, 184, 186 Type, 184 Tubing, 63, 64 Two-phase flow, 124 Calculations, 125-127 Flow patterns, chart, 124 System pressure drop, 125 Types of flow, 124, 125 Utilities check list, process design, 34 Vacuum,... [Pg.630]

Ni steel), developed specifically for the inner line of vacuum-insulated pipe and which has a very high allowable stress. Factors that should be considered in choosing among these methods include relative cost existing trenches, supports, and other equipment or piping terrain ease in achieving and maintaining cleanliness of system pressure drop maintenance and reliability. [Pg.446]

Dewatering of high value products and particle systems sensitive to high pressure drops are the most likely candidates for electrofiltration. The Dorr-OHver Electrofilter is a commercial example of a vacuum filter adapted for electrofiltration. [Pg.390]

The so-called hyperbar vacuum filtration is a combination of vacuum and pressure filtration in a pull—push arrangement, whereby a vacuum pump of a fan generates vacuum downstream of the filter medium, while a compressor maintains higher-than-atmospheric pressure upstream. If, for example, the vacuum produced is 80 kPa, ie, absolute pressure of 20 kPa, and the absolute pressure before the filter is 150 kPa, the total pressure drop of 130 kPa is created across the filter medium. This is a new idea in principle but in practice requires three primary movers a Hquid pump to pump in the suspension, a vacuum pump to produce the vacuum, and a compressor to supply the compressed air. The cost of having to provide, install, and maintain one additional primary mover has deterred the development of hyperbar vacuum filtration only Andrit2 in Austria offers a system commercially. [Pg.407]

The fluid dehvery in an air-spray system can be pressure or suction fed. In a pressure-fed system, the fluid is brought to the atomizer under positive pressure generated with an external pump, a gas pressure over the coating material in a tank, or an elevation head. In a suction system, the annular flow of air around the fluid tip generates sufficient vacuum to aspirate the coating material from a container through a fluid tube and into the air stream. In this case, the paint supply is normally located in a small cup attached to the spray device to keep the elevation differential and frictional pressure drop in the fluid-supply tube small. [Pg.330]

Packed vs Plate Columns. Relative to plate towers, packed towers are more useful for multipurpose distillations, usually in small (under 0.5 m) towers or for the following specific appHcations severe corrosion environment where some corrosion-resistant materials, such as plastics, ceramics, and certain metaUics, can easily be fabricated into packing but may be difficult to fabricate into plates vacuum operation where a low pressure drop per theoretical plate is a critical requirement high (eg, above 49,000 kg/(hm ) (- 10, 000 lb/(hft )) Hquid rates foaming systems or debottlenecking plate towers having plate spacings that are relatively close, under 0.3 m. [Pg.174]

Heat Sensitivity. The heat sensitivity or polymerization tendencies of the materials being distilled influence the economics of distillation. Many materials caimot be distilled at their atmospheric boiling points because of high thermal degradation, polymerization, or other unfavorable reaction effects that are functions of temperature. These systems are distilled under vacuum in order to lower operating temperatures. For such systems, the pressure drop per theoretical stage is frequently the controlling factor in contactor selection. An exceUent discussion of equipment requirements and characteristics of vacuum distillation may be found in Reference 90. [Pg.175]

Feed Slurry Temperature Temperature can be both an aid and a limitation. As temperature of the feed slurry is increased, the viscosity of the hquid phase is decreased, causing an increase in filtration rate and a decrease in cake moisture content. The limit to the benefits of increased temperature occurs when the vapor pressure of the hquid phase starts to materially reduce the allowable vacuum. If the hquid phase is permitted to flash within the filter internals, various undesired resiilts may ensue disruption in cake formation adjacent to the medium, scale deposit on the filter internals, a sharp rise in pressure drop within the filter drainage passages due to increased vapor flow, or decreased vacuum pump capacity. In most cases, the vacuum system should be designed so that the liquid phase does not boil. [Pg.1693]

Vacuum pump capacity is conventionally based on the total cycle and expressed as mVh-m" (cfi7i/ft ) of filter area measured at pump inlet conditions. Thus, the gas volumes per unit area passing during each dry period in the cycle are totaled and divided by the cycle time to arrive at the design air rate. Since air rate measurements in the test program are based on pressure drop across the cake and filter medium only, allowance must be made For additional expansion due to pressure drop within the filter and auxiliary piping system in arriving at vacuum pump inlet conditions. [Pg.1702]

Required vacuum pump capacity = 2.65/4.29 = 0.62 mVmiu X m of total filter area. AUow for pressure drop within system when specifying the vacuum pump. See next example. [Pg.1704]

In general, the sonic or critical velocity is attained for an outlet or downstream pressure equal to or less than one half the upstream or inlet absolute pressure condition of a system. The discharge through an orifice or nozzle is usually a limiting condition for the flow through the end of a pipe. The usual pressure drop equations do not hold at the sonic velocity, as in an orifice. Conditions or systems exhausting to atmosphere (or vacuum) from medium to high pressures should be examined for critical flow, otherwise the calculated pressure drop may be in error. [Pg.108]

Figure 2-47. Acceptable pressure losses between the vacuum vessel and the vacuum pump. Note reference sections on figure to system diagram to illustrate the sectional type hook-ups for connecting lines. Use 60% of the pressure loss read as acceptable loss for the system from process to vacuum pump, for initial estimate. P = pressure drop (torr) of line in question Po = operating pressure of vacuum process equipment, absolute, torr. By permission, Ryans, J. L. and Roper, D. L., Process Vacuum System Design Operation, McGraw-Hill Book Co., Inc., 1986 [18]. Figure 2-47. Acceptable pressure losses between the vacuum vessel and the vacuum pump. Note reference sections on figure to system diagram to illustrate the sectional type hook-ups for connecting lines. Use 60% of the pressure loss read as acceptable loss for the system from process to vacuum pump, for initial estimate. P = pressure drop (torr) of line in question Po = operating pressure of vacuum process equipment, absolute, torr. By permission, Ryans, J. L. and Roper, D. L., Process Vacuum System Design Operation, McGraw-Hill Book Co., Inc., 1986 [18].
AP ae = Pressure drop in vacuum system due to friction, in. whaler/100 ft pipe... [Pg.155]

Application Systems where high capacity near-design rates to be maintained in continuous service. Handles suspended crystal and small solid materials, as well as polymer forming materials. Holes become plugged in salting-out systems where trays run hot and dry (as underside of bottom tray). Good in vacuum or low-pressure-drop design. [Pg.124]

Low tray pressure drop is required, as for vacuum systems. Design with extra caution under vacuum, since data correlations have not been checked in this region. [Pg.193]

Vacuum distillation varies with the system tmd particularly with the absolute pressure required at the bottom of the column normally select low pressure drop in the range of 0.1 to 0.2 in. water/ft of packing. For in vacuum service of 75 mm Hg and lower, the pressure drop obtained from the GPDC,... [Pg.293]

Lower pressure drop for vacuum systems Allows for better low pressure and vacuum system operation and lower bottoms temperature, with less degradation of bottoms product. [Pg.342]

This compares to assumed value of 0.001 + 0.001 = 0.002 The Kern method is usually easier to handle for pressure systems than for vacuum systems. The recirculation ratio is higher and, therefore, requires more trials to narrow-in on a reasonable value for the low pressure systems. The omission of two-phase flow in pressure drop analysis may be a serious problem in the low pressure system, because a ratio on the high side may result, causing a high hj value. In general, however, for systems from atmospheric pressure and above, the method usually gives conservative results when used within Kern s limitations. [Pg.202]

Accounting, plant construction costs, 48 Cost accumulation, 49 Affinity laws, 201, 202, 203 Air Inleakage, vacuum systems, see vacuum systems Air pressure drop, table, 106 Chart, 114 Orifice flow, 107 Air, absolute viscosity, 132... [Pg.626]

Pressure/vacuum, 435, 466 Vacuum systems, 343 Absolute pressure conversions, 363 Air inleakage, 366 Calculations, 366-375 Dissolved gases release, 368 Estimated air inleakage, table, 366 Evacuation time, 371 Maximum air leakage, chart, 367 Specific air inleakage rates, 368 Temperature approach, 375 Classifications, 343 Diagrams, 380 Pressure drop, 353 Pressure levels, 343, 352 Pressure terminology, 348 Pump down example, 381 Pump down time, 380 Thermal efficiency, 384 Valve codes, 26... [Pg.630]

Similar considerations apply to the selection of pressure drops where there is freedom of choice, although a full economic analysis is justified only in the case of very expensive units. For liquids, typical values in optimised units are 35 kN/m2 where the viscosity is less than 1 mN s/m2 and 50-70 kN/m2 where the viscosity is 1-10 mN /m2 for gases, 0.4-0.8 kN/m2 for high vacuum operation, 50 per cent of the system pressure at 100- 200 kN/m2, and 0 per cent of the system pressure above 1000 kN/m2. Whatever pressure drop is used, it is important that erosion and flow-induced tube vibration caused by high velocity fluids are avoided. [Pg.527]

In many applications the pressure drop available to drive the fluids through the exchanger will be set by the process conditions, and the available pressure drop will vary from a few millibars in vacuum service to several bars in pressure systems. [Pg.661]

Figure 4-4 shows a typical system under positive pressure. It differs from the vacuum system in that the material enters from one source and is distributed directly to several tanks. In this case no cyclone separator is used the air laden with solids enters the process bins directly. The decrease in velocity of the stream and its change in direction will cause most of the solids to drop out. For this system each receiver must have a filter to remove the remaining solids. Note that the blower is placed at the air entrance, instead of after the filter as in the vacuum system. Should a bag in the fiber filter break, no dust will get into the blower or its motor. Another advantage is that no contaminants from the atmosphere can enter the system when it is under positive pressure, except through the air inlet system. [Pg.202]

A vacuum system like that shown in Figure 4-3 will be used,36 since delivery to a single receiver is desired. For this system there will be 100 ft of horizontal pipe and 35 ft of vertical pipe. The pressure drop across the air filter at the air inlet should be about 0.5 in. H20 and that across the receiver should be negligible. The pressure drop across the fabric filter is 4.0 in.H20 and across the receiver is 3 in H20. [Pg.226]


See other pages where Vacuum systems Pressure drop is mentioned: [Pg.641]    [Pg.131]    [Pg.482]    [Pg.478]    [Pg.12]    [Pg.298]    [Pg.249]    [Pg.350]    [Pg.119]    [Pg.128]    [Pg.642]    [Pg.298]    [Pg.325]    [Pg.119]    [Pg.128]    [Pg.628]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Pressure Drop in Vacuum Systems

Pressure systems

Pressurizing system

Vacuum Pressure drop

Vacuum system

© 2024 chempedia.info