Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Useful information, quantum

In addition to the obvious structural information, vibrational spectra can also be obtained from both semi-empirical and ab initio calculations. Computer-generated IR and Raman spectra from ab initio calculations have already proved useful in the analysis of chloroaluminate ionic liquids [19]. Other useful information derived from quantum mechanical calculations include and chemical shifts, quadru-pole coupling constants, thermochemical properties, electron densities, bond energies, ionization potentials and electron affinities. As semiempirical and ab initio methods are improved over time, it is likely that investigators will come to consider theoretical calculations to be a routine procedure. [Pg.156]

Two properties, in particular, make Feynman s approach superior to Benioff s (1) it is time independent, and (2) interactions between all logical variables are strictly local. It is also interesting to note that in Feynman s approach, quantum uncertainty (in the computation) resides not in the correctness of the final answer, but, effectively, in the time it takes for the computation to be completed. Peres [peres85] points out that quantum computers may be susceptible to a new kind of error since, in order to actually obtain the result of a computation, there must at some point be a macroscopic measurement of the quantum mechanical system to convert the data stored in the wave function into useful information, any imperfection in the measurement process would lead to an imperfect data readout. Peres overcomes this difficulty by constructing an error-correcting variant of Feynman s model. He also estimates the minimum amount of entropy that must be dissipated at a given noise level and tolerated error rate. [Pg.676]

These matrix elements are in a form that can be evaluated using standard quantum chemical methods. This evaluation is tedious and the earlier assumptions that we made will lead to significant errors in the matrix elements. On the other hand, we can conveniently use experimental information to approximate the diagonal matrix elements. [Pg.62]

In silico technology is set to produce a quantum leap in our understanding of the nature of man, for it is only through the identification of useful information in the vast amount of data on man that we will arrive at a genuine comprehension of our biological nature. [Pg.148]

An analogous role has been played by other scientists in strengthening the ties between quantum chemistry of type I (and type II) with the area corresponding to biochemistry (or complex molecular systems in general), a task made more difficult by the explosive growth of structural and functional information about biomolecular systems. It is worth to remark here that such a fruitful use of quantum chemical concepts in biology has requested the extension of the methods to approaches different from quantum molecular theory in the strict sense introduced before. We shall comeA back to this remark later. [Pg.3]

We start in this chapter with potential-based methods, the computationally cheapest approach, which can be applied to large assemblies of molecules. We then move on to the use of quantum mechanical techniques, as used for problems involving smaller numbers of atoms. The aim is to give a brief overview of the subject and its applications, and to show what type of information can be obtained from the different methods. The reader is referred to specialist texts for fuller details. [Pg.339]

In photosynthetic systems, some electron transfer processes exhibit nonexponential kinetics at low temperature, which are generally attributed to the existence of different conformations of the system. While the differences between the reaction rates corresponding to these conformations do not exceed a factor of four in some cases [157,158,159], they are sufficient to lead to different quantum yields in others [160, 161]. Sometimes, the heterogeneous character of the kinetics disappears at room temperature, which probably reflects a fast exchange between the conformations that are frozen at low temperature [157, 158]. A systematic study of all these effects, similar to that performed in Ref [159], could give useful information about the nature of the conformational differences. [Pg.34]

Orbitals have a variety of different possible shapes. Therefore, scientists use three quantum numbers to describe an atomic orbital. One quantum number, n, describes an orbital s energy level and size. A second quantum number, I, describes an orbital s shape. A third quantum number, mi, describes an orbital s orientation in space. These three quantum numbers are described further below. The Concept Organizer that follows afterward summarizes this information. (In section 3.3, you will learn about a fourth quantum number, mg, which is used to describe the electron inside an orbital.)... [Pg.134]

Moreover, we note that recently in reconstructing relaxation times via the time-temperature superposition principle using double quantum nuclear magnetic resonance (DQ-NMR) the and power laws were invoked without giving the spatial information of NSE [75]. [Pg.54]

Most results on the free actinide atom came from atomic spectroscopy and from atomic quantum calculations of wave functions and eigenvalues pf their outer electrons. This section cannot be an exhaustive review devoted to the theory and interpretation of the very complex spectra of the actinide atoms and ions. We shall recall briefly the theoretical approach used in atomic calculations and then give some of the numerous useful informations that derived from atomic studies for solid state physicists and chemists. [Pg.14]

When structural and dynamical information about the solvent molecules themselves is not of primary interest, the solute-solvent system may be made simpler by modeling the secondary subsystem as an infinite (usually isotropic) medium characterized by the same dielecttic constant as the bulk solvent, that is, a dielectric continuum. Theoretical interpretation of chemical reaction rates has a long history already. Until recently, however, only the chemical reactions of systems containing a few atoms in the gas phase could be studied using molecular quantum mechanics due to computational expense. Fortunately, very important advances have been made in the power of computer-simulation techniques for chemical reactions in the condensed phase, accompanied by an impressive progress in computer speed (Gonzalez-Lafont et al., 1996). [Pg.286]

The ground-state wave function of cytosine has been calculated by practically all the semiempirical as well as nonempirical methods. Here, we shall discuss the application of these methods to interpret the experimental quantities that can. be calculated from the molecular orbitals of cytosines and are related to the distribution of electron densities in the molecules. The simplest v-HMO method yielded a great mass of useful information concerning the structure and the properties of biological molecules including cytosines. The reader is referred to the book1 Quantum Biochemistry for the application of this method to interpret the physicochemical properties of biomolecules. Here we will restrict our attention to the results of the v-SCF MO and the all-valence or all-electron treatments of cytosines. [Pg.235]

Quantum chemistry is the foundation of molecular chemistry dealing with structure, properties, and interaction of molecules. The basic principles are offered by quantum mechanics. Quantum-chemical calculations are able to supply information needed for molecular descriptors for QSAR analyses. The use of quantum-chemical calculations is becoming common to establish molecular equilibrium geometries and conformations and to supply quantitative thermochemical and kinetic data. [Pg.150]

Point (3) above requires some amplification. At the quantitative level, the ultimate aim of either a VB or an MO calculation is to obtain the total molecular wave function. Such a function will lead to an electron density map for the molecule which should yield information about its bonding and insights into its reactivity. The function may also be manipulated in order to calculate various molecular constants whose theoretical values can be compared with experimental ones, if available. The kind of function we are talking about is a many-electron function it contains the coordinates of all the electrons in the molecule, and is usually expressed as a product of one-electron functions (i.e. orbitals). In MO theory, these are the MOs. The constraints of symmetry and orthogonality ensure that these MOs are amenable in themselves to quantum-mechanical manipulations. In VB theory, however, the one-electron functions are localised bond orbitals which are not quite respectable and are not immediately amenable to manipulation. The total molecular wave function obtained from a VB calculation is not necessarily inferior to its MO counterpart however, its factorisation into one-electron functions is designed to preserve the useful and successful notion of the localised electron-pair bond. This has the disadvantage that the one-electron functions are less useful for quantum-mechanical purposes. [Pg.15]

Berger and Wolfe (1996) reported a correlation of hydrolysis data for 12 sulfonylurea herbicides. The use of bond strength or Hammett a constants was impossible because of the complex structures of the compounds. The hydrolysis pathways for this class of compounds are also more complex, but the use of quantum mechanical parameters provided the detailed structural information needed to develop a useful correlation. As a result of the many different functional groups, several reaction pathways are available depending on the substituents. Also, there is a complicating pH effect on the pathways and the kinetics of hydrolysis as shown by product studies. The 12 herbicides used in this study are listed in Table 13.4, and the pseudo first-order hydrolysis rate constants are given in Table 13.5. Figure 13.2 shows the basic structure of these compounds. [Pg.346]

The combination of the cluster model approach and modem powerful quantum chemistry techniques can provide useful information about the electronic structure of local phenomena in metal oxides. The theoretical description of the electronic states involved in local optical transitions and magnetic phenomena, for example, in these oxides needs very accurate computational schemes, because of the generally very large differential electron correlation effects. Recently, two very promising methods have become available, that allow to study optical and magnetic phenomena with a high degree of precision. The first one, the Differ-... [Pg.227]

We may conclude by giving some examples of chemical problems where the indirect calculation of reactivity has given new and useful information. These examples show that quantum chemistry, even in its present primitive form, has already become an important tool for helping to determine structures and reaction mechanisms. [Pg.126]

In our short survey of the computational techniques available for investigating TM compounds we first mention molecular mechanics (Chapter 3). It may seem humble by the standards of the quantum mechanical ab initio, semiempirical and DFT methods (Chapters 5, 6 and 8, respectively) but MM is useful for obtaining input structures for submission to one of those calculations, may even provide in itself useful information, and it is, of course, extremely fast. Indeed, a recent book on the modelling of inorganic compounds, mainly TM species, is devoted very largely to molecular mechanics and a program specially parameterized for TM compounds, Momec3 [105],... [Pg.551]

Quantum mechanics calculations are more expensive to carry out because they require considerable more computing power and time than molecular mechanics calculations. Consequently, molecular mechanics is the more useful source of the large structures of interest to the medicinal chemist and so this chapter will concentrate on this method. To save time and expense, structures are often built up using information obtained from databases, such as the Cambridge and Brookhaven databases. Information from databases may also be used to check the accuracy of the modelling technique. However, in all cases, the accuracy of the structures obtained will depend on the accuracy of the data used in their determination. Furthermore, it must be appreciated that the molecular models produced by computers are a caricature of reality that simply provide us with a useful picture for design and communication purposes. It is important to realize that we still do not know what molecules actually look like ... [Pg.97]


See other pages where Useful information, quantum is mentioned: [Pg.138]    [Pg.535]    [Pg.46]    [Pg.185]    [Pg.201]    [Pg.146]    [Pg.270]    [Pg.105]    [Pg.158]    [Pg.15]    [Pg.193]    [Pg.113]    [Pg.186]    [Pg.48]    [Pg.64]    [Pg.310]    [Pg.1046]    [Pg.186]    [Pg.321]    [Pg.3]    [Pg.127]    [Pg.304]    [Pg.54]    [Pg.20]    [Pg.325]    [Pg.59]    [Pg.126]    [Pg.223]    [Pg.470]   


SEARCH



Information use

Useful Information

Useful information, quantum mechanics expectation

© 2024 chempedia.info