Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computer simulation technique

The solution adopted by us is the use of computer simulations of mathematical models of the process and the mock-up situations. Eventually, simulation techniques will become so accurate, that the mock-up step can be discarded. For the time being it is reasonable to use such models to generate corrections for smaller differences between mock-up and process. [Pg.1056]

Mathematical modeling, using digital computers, aids in performing a systems-type analysis for either the entire system or parts of it. By means of integer or linear-programming techniques, optimum systems can be identified. The dynamic performance of these can then be determined by simulation techniques. [Pg.1911]

Computer simulation techniques offer the ability to study the potential energy surfaces of chemical reactions to a high degree of quantitative accuracy [4]. Theoretical studies of chemical reactions in the gas phase are a major field and can provide detailed insights into a variety of processes of fundamental interest in atmospheric and combustion chemistry. In the past decade theoretical methods were extended to the study of reaction processes in mesoscopic systems such as enzymatic reactions in solution, albeit to a more approximate level than the most accurate gas-phase studies. [Pg.221]

The integral equation method is free of the disadvantages of the continuum model and simulation techniques mentioned in the foregoing, and it gives a microscopic picture of the solvent effect within a reasonable computational time. Since details of the RISM-SCF/ MCSCF method are discussed in the following section we here briefly sketch the reference interaction site model (RISM) theory. [Pg.419]

Essentially, the RISM and extended RISM theories can provide infonnation equivalent to that obtained from simulation techniques, namely, thermodynamic properties, microscopic liquid structure, and so on. But it is noteworthy that the computational cost is dramatically reduced by this analytical treatment, which can be combined with the computationally expensive ab initio MO theory. Another aspect of such treatment is the transparent logic that enables phenomena to be understood in terms of statistical mechanics. Many applications have been based on the RISM and extended RISM theories [10,11]. [Pg.420]

There are basically two different computer simulation techniques known as molecular dynamics (MD) and Monte Carlo (MC) simulation. In MD molecular trajectories are computed by solving an equation of motion for equilibrium or nonequilibrium situations. Since the MD time scale is a physical one, this method permits investigations of time-dependent phenomena like, for example, transport processes [25,61-63]. In MC, on the other hand, trajectories are generated by a (biased) random walk in configuration space and, therefore, do not per se permit investigations of processes on a physical time scale (with the dynamics of spin lattices as an exception [64]). However, MC has the advantage that it can easily be applied to virtually all statistical-physical ensembles, which is of particular interest in the context of this chapter. On account of limitations of space and because excellent texts exist for the MD method [25,61-63,65], the present discussion will be restricted to the MC technique with particular emphasis on mixed stress-strain ensembles. [Pg.22]

The computation of quantum many-body effects requires additional effort compared to classical cases. This holds in particular if strong collective phenomena such as phase transitions are considered. The path integral approach to critical phenomena allows the computation of collective phenomena at constant temperature — a condition which is preferred experimentally. Due to the link of path integrals to the partition function in statistical physics, methods from the latter — such as Monte Carlo simulation techniques — can be used for efficient computation of quantum effects. [Pg.78]

The partition function Z is given in the large-P limit, Z = limp co Zp, and expectation values of an observable are given as averages of corresponding estimators with the canonical measure in Eq. (19). The variables and R ( ) can be used as classical variables and classical Monte Carlo simulation techniques can be applied for the computation of averages. Note that if we formally put P = 1 in Eq. (19) we recover classical statistical mechanics, of course. [Pg.93]

The study of surface chemical reaction processes using computer simulation techniques is quite an active field of research. Within this context the Monte Carlo method emerges as a powerful tool which contributes to the... [Pg.429]

K. Binder. General aspects of computer simulation techniques and their applications in polymer physics. In K. Binder, ed. Monte Carlo and Molecular Dynamics Simulations in Polymer Science. New York Oxford University Press, 1995, pp. 3 1. [Pg.624]

The world of colloidal particles is large and fasdnating. Basic simulation techniques rapidly lead to challenging questions and new things to be discovered. Computer simulations are close enough to experiments to allow intellectual inspiration as well as a quantitative comparison of the results. We have reviewed the basic simulation techniques and their principal implementation but could only briefly mention advanced techniques and results. A survey of the recent literature shows the variety of physical effects present in colloidal systems and accessible to computer simulations. [Pg.769]

H. Takeno, T. Otogawa, Y. Kitagawara. Practical computer simulation technique to predict oxygen precipitation behavior in Czochralski silicon wafers for various thermal processes. J Electrochem Soc 144 4340, 1997. [Pg.927]

Piping and filter systems designed by acoustical principles, using a simulation technique on an analog computer. [Pg.582]

This fascinating product will still continue to develop to accommodate new applications, safety, health and environment (SHE) issues, advantages of novel materials like nano-composites, plasma-surface-modified carbon black, development of computer simulation techniques, and finally to develop a cybernetic or thinking tire. [Pg.932]

We review here results of computer simulations of monolayers, with an emphasis on those models that include significant molecular detail to the surfactant molecule. We start with a focus on hydrocarbon chains and simple head groups (typically a COOH group in either the neutral or the ionized state) and a historical focus. A less comprehensive review follows on simulations of surfactants of other types, either nonhydrocarbon chains or different head groups. More detailed descriptions of the general simulation techniques discussed here are available in a book dedicated to simulation techniques, for example, Allen and Tildesley [338] or Frenkel and Smit [339],... [Pg.118]

In most cases the only appropriate approach to model multi-phase flows in micro reactors is to compute explicitly the time evolution of the gas/liquid or liquid/ liquid interface. For the motion of, e.g., a gas bubble in a surrounding liquid, this means that the position of the interface has to be determined as a function of time, including such effects as oscillations of the bubble. The corresponding transport phenomena are known as free surface flow and various numerical techniques for the computation of such flows have been developed in the past decades. Free surface flow simulations are computationally challenging and require special solution techniques which go beyond the standard CFD approaches discussed in Section 2.3. For this reason, the most common of these techniques will be briefly introduced in... [Pg.230]

Microcomputers, introduced in the late 1970 s have revolutionized the use of computers. The availability of easy-to-use, inexpensive softwares has also contributed to the upsurge in computer usage. Small systems, with compute power and capability equivalent to large multimillion dollar main frames, are now affordable by small organizations as well as individuals. In this paper the use of computers in applied polymer science will be introduced, using successful applications in our own laboratory as examples. The emphasis is on the application of mathematical modelling and computer simulation techniques. [Pg.170]

The use of the Poisson distribution for this purpose predates the statistical overlap theory of Davis and Giddings (1983), which also utilized this approach, by 9 years. Connors work seems to be largely forgotten because it is based on 2DTLC that doesn t have the resolving power (i.e., efficiency or the number of theoretical plates) needed for complex bioseparations. However, Martin et al. (1986) offered a more modem and rigorous theoretical approach to this problem that was further clarified recently (Davis and Blumberg, 2005) with computer simulation techniques. Clearly, the concept and mathematical approach used by Connors were established ahead of its time. [Pg.12]

Beyond the clusters, to microscopically model a reaction in solution, we need to include a very big number of solvent molecules in the system to represent the bulk. The problem stems from the fact that it is computationally impossible, with our current capabilities, to locate the transition state structure of the reaction on the complete quantum mechanical potential energy hypersurface, if all the degrees of freedom are explicitly included. Moreover, the effect of thermal statistical averaging should be incorporated. Then, classical mechanical computer simulation techniques (Monte Carlo or Molecular Dynamics) appear to be the most suitable procedures to attack the above problems. In short, and applied to the computer simulation of chemical reactions in solution, the Monte Carlo [18-21] technique is a numerical method in the frame of the classical Statistical Mechanics, which allows to generate a set of system configurations... [Pg.127]

Alternative methods of analysis have been examined and evaluated. Shokoohi and Elrod[533] solved the Navier-Stokes equations numerically in the axisymmetric form. Bogy15271 used the Cosserat theory developed by Green.[534] Ibrahim and Linl535 conducted a weakly nonlinear instability analysis. The method of strained coordinates was also examined. In spite of the mathematical or computational elegance, all of these methods suffer from inherent complexity. Lee15361 developed a 1 -D, nonlinear direct-simulation technique that proved to be a simple and practical method for investigating the nonlinear instability of a liquid j et. Lee s direct-simulation approach formed the... [Pg.322]


See other pages where Computer simulation technique is mentioned: [Pg.246]    [Pg.317]    [Pg.466]    [Pg.470]    [Pg.367]    [Pg.166]    [Pg.130]    [Pg.3]    [Pg.88]    [Pg.169]    [Pg.746]    [Pg.852]    [Pg.67]    [Pg.435]    [Pg.65]    [Pg.66]    [Pg.7]    [Pg.110]    [Pg.627]    [Pg.610]    [Pg.93]    [Pg.268]    [Pg.433]    [Pg.125]    [Pg.250]    [Pg.523]    [Pg.268]    [Pg.173]    [Pg.446]    [Pg.125]   


SEARCH



Analyzing Computer Simulation Results by Graphical Techniques

Computational simulations

Computed technique

Computer simulation

Computer simulation basic techniques

Computer techniques

Computing techniques

Simulation techniques

Use of computer simulation techniques

© 2024 chempedia.info