Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

United States hydrogen production

High temperature steam reforming of natural gas accounts for 97% of the hydrogen used for ammonia synthesis in the United States. Hydrogen requirement for ammonia synthesis is about 336 m /t of ammonia produced for a typical 1000 t/d ammonia plant. The near-term demand for ammonia remains stagnant. Methanol production requires 560 m of hydrogen for each ton produced, based on a 2500-t/d methanol plant. Methanol demand is expected to increase in response to an increased use of the fuel—oxygenate methyl /-butyl ether (MTBE). [Pg.432]

New synthetic processes for the preparation of established products were also industrially developed in Japan the manufacture of methyl methacrylate from C4 olefins, by Sumitomo and Nippon Shokubai in France, the simultaneous production of hydroquinone and pyro-catechin through hydrogen peroxide oxidation of phenol by Rhone-Poulenc in the United States the production of propylene oxide through direct oxidation of propylene operating jointly with styrene production, developed by Ralph Landau and used in the Oxirane subsidiary with Arco, which the latter fully took over in 1980 in Germany and Switzerland, the synthesis of vitamin A from terpenes, used by BASF and Hoffmann-La Roche. [Pg.14]

The fusion of hydrogen into helium provides the energy of the hydrogen bomb. The helium content of the atmosphere is about 1 part in 200,000. While it is present in various radioactive minerals as a decay product, the bulk of the Free World s supply is obtained from wells in Texas, Oklahoma, and Kansas. The only known helium extraction plants, outside the United States, in 1984 were in Eastern Europe (Poland), the USSR, and a few in India. [Pg.6]

Until the 1920s the major source of methanol was as a byproduct m the production of charcoal from wood—hence the name wood alcohol Now most of the more than 10 billion lb of methanol used annually m the United States is synthetic prepared by reduc tion of carbon monoxide with hydrogen... [Pg.623]

Since 1960, about 95% of the synthetic ammonia made in the United States has been made from natural gas worldwide the proportion is about 85%. Most of the balance is made from naphtha and other petroleum Hquids. Relatively small amounts of ammonia are made from hydrogen recovered from coke oven and refinery gases, from electrolysis of salt solutions, eg, caustic chlorine production, and by electrolysis of water. In addition there are about 20 ammonia plants worldwide that use coal as a hydrogen source. [Pg.243]

Economic Aspects. Pertinent statistics on the U.S. production and consumption of fluorspar are given in Table 4. For many years the United States has rehed on imports for more than 80% of fluorspar needs. The principal sources are Mexico, China, and the Repubflc of South Africa. Imports from Mexico have declined in part because Mexican export regulations favor domestic conversion of fluorspar to hydrogen fluoride for export to the United States. [Pg.173]

North America accounts for about 38% of the worldwide hydrogen fluoride production and 52% of the captive aluminum fluoride production. Table 6 (38) summarizes North American capacity for hydrogen fluoride as weU as this captive capacity for aluminum fluoride production. In North America, HF is produced in the United States, Canada, and Mexico, but represents a single market, as weU over 90% of the consumption is in the United States. [Pg.198]

At one time, the only commercial route to 2-chloro-1,3-butadiene (chloroprene), the monomer for neoprene, was from acetylene (see Elastomers, synthetic). In the United States, Du Pont operated two plants in which acetylene was dimeri2ed to vinylacetylene with a cuprous chloride catalyst and the vinyl-acetylene reacted with hydrogen chloride to give 2-chloro-1,3-butadiene. This process was replaced in 1970 with a butadiene-based process in which butadiene is chlorinated and dehydrochlorinated to yield the desired product (see Chlorocarbonsandchlorohydrocarbons). [Pg.393]

Hydrogen Chloride as By-Product from Chemical Processes. Over 90% of the hydrogen chloride produced in the United States is a by-product from various chemical processes. The cmde HCl generated in these processes is generally contaminated with impurities such as unreacted chlorine, organics, chlorinated organics, and entrained catalyst particles. A wide variety of techniques are employed to treat these HCl streams to obtain either anhydrous HCl or hydrochloric acid. Some of the processes in which HCl is produced as a by-product are the manufacture of chlorofluorohydrocarbons, manufacture of aUphatic and aromatic hydrocarbons, production of high surface area siUca (qv), and the manufacture of phosphoric acid [7664-38-2] and esters of phosphoric acid (see Phosphoric acid and phosphates). [Pg.445]

DIBK can be produced by the hydrogenation of phorone which, in turn, is produced by the acid-catalyzed aldol condensation of acetone. It is also a by-product in the manufacture of methyl isobutyl ketone. Diisobutyl ketone ( 1.37/kg, October 1994) is produced in the United States by Union Carbide (Institute, West Virginia) and Eastman (Kingsport, Teimessee) (47), and is mainly used as a coating solvent. Catalytic hydrogenation of diisobutyl ketone produces the alcohol 2,6-dimethyl-4-heptanol [108-82-7]. [Pg.493]

In the multistep production of IPDI, isophorone is first converted to 3-cyano-3,5,5-trknethylcyclohexanone (231—235), then hydrogenated and ammoniated to 3-aminomethyl-3,5,5-trknethyl-l-aminocyclohexane (1) (236,237), also known as isophorone diamine (IPDA). In the final step IPDA is phosgenated to yield IPDI (2) (238). Commercial production of IPDI began in the United States in 1992 with the startup of Olin s 7000 t/yr plant at Lake Charles, Louisiana (239), and the startup of Hbls integrated isophorone derivatives plant in Theodore, Alabama (240). Hbls has a worldwide capacity for IPDA of 40,000 t/yr. [Pg.496]

Electrolytic Preparation of Chlorine and Caustic Soda. The preparation of chlorine [7782-50-5] and caustic soda [1310-73-2] is an important use for mercury metal. Since 1989, chlor—alkali production has been responsible for the largest use for mercury in the United States. In this process, mercury is used as a flowing cathode in an electrolytic cell into which a sodium chloride [7647-14-5] solution (brine) is introduced. This brine is then subjected to an electric current, and the aqueous solution of sodium chloride flows between the anode and the mercury, releasing chlorine gas at the anode. The sodium ions form an amalgam with the mercury cathode. Water is added to the amalgam to remove the sodium [7440-23-5] forming hydrogen [1333-74-0] and sodium hydroxide and relatively pure mercury metal, which is recycled into the cell (see Alkali and chlorine products). [Pg.109]

Acid-cataly2ed hydroxylation of naphthalene with 90% hydrogen peroxide gives either 1-naphthol or 2-naphthiol at a 98% yield, depending on the acidity of the system and the solvent used. In anhydrous hydrogen fluoride or 70% HF—30% pyridine solution at — 10 to + 20°C, 1-naphthol is the product formed in > 98% selectivity. In contrast, 2-naphthol is obtained in hydroxylation in super acid (HF—BF, HF—SbF, HF—TaF, FSO H—SbF ) solution at — 60 to — 78°C in > 98% selectivity (57). Of the three commercial methods of manufacture, the pressure hydrolysis of 1-naphthaleneamine with aqueous sulfuric acid at 180°C has been abandoned, at least in the United States. The caustic fusion of sodium 1-naphthalenesulfonate with 50 wt % aqueous sodium hydroxide at ca 290°C followed by the neutralization gives 1-naphthalenol in a ca 90% yield. [Pg.497]

Of the binary peroxides made from hydrogen peroxide, calcium peroxide is the most important. World production is about 2000 t/yr, which is dominated by the dough-conditioning market in the United States. The markets for the other binary peroxides, such as those of zinc, magnesium, and strontium, total only a few hundred metric tons. Sodium peroxide and potassium superoxide are made from the alkaU metals and thek total markets are in the hundreds of tons. [Pg.99]

Propanol has been manufactured by hydroformylation of ethylene (qv) (see Oxo process) followed by hydrogenation of propionaldehyde or propanal and as a by-product of vapor-phase oxidation of propane (see Hydrocarbon oxidation). Celanese operated the only commercial vapor-phase oxidation faciUty at Bishop, Texas. Since this faciUty was shut down ia 1973 (5,6), hydroformylation or 0x0 technology has been the principal process for commercial manufacture of 1-propanol ia the United States and Europe. Sasol ia South Africa makes 1-propanol by Fischer-Tropsch chemistry (7). Some attempts have been made to hydrate propylene ia an anti-Markovnikoff fashion to produce 1-propanol (8—10). However, these attempts have not been commercially successful. [Pg.117]

Economic Aspects. Most hydrogen sulfide is made and used captively or sold by pipeline at prices which are highly variable, depending on locahty. Production ia the United States exceeds 1.1 X 10 t/yr-It has been estimated that 2.4 x 10 t/yr of sulfur are recovered from H2S-containing refinery streams and 1.8 x 10 t/yr of sulfur are recovered from H S-containing natural gas (120). [Pg.136]


See other pages where United States hydrogen production is mentioned: [Pg.537]    [Pg.39]    [Pg.909]    [Pg.205]    [Pg.492]    [Pg.101]    [Pg.217]    [Pg.94]    [Pg.180]    [Pg.247]    [Pg.163]    [Pg.163]    [Pg.165]    [Pg.171]    [Pg.63]    [Pg.89]    [Pg.11]    [Pg.366]    [Pg.393]    [Pg.418]    [Pg.421]    [Pg.424]    [Pg.429]    [Pg.450]    [Pg.481]    [Pg.490]    [Pg.178]    [Pg.38]    [Pg.47]    [Pg.46]    [Pg.4]    [Pg.382]    [Pg.180]    [Pg.208]    [Pg.135]   
See also in sourсe #XX -- [ Pg.449 ]




SEARCH



Hydrogen states

Hydrogenation state

Product state

Production units

© 2024 chempedia.info