Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Types of Positive Resists

Many papers have been published on positive electron-beam resists. These resists are mostly polymers which are degraded upon electron-beam irradiation. The resulting lower molecular weight polymer in the exposed area can be selectively removed by a solvent under certain developing conditions. The development is accomplished by the difference in the rate of dissolution between the exposed and unexposed areas, which is a function of the molecular weight of the polymer. Recently, Willson and his co-workers reported the new type of positive resist, poly(phthalaldehyde), the exposure of which in the presence of certain cationic photoinitiators resulted in the spontaneous formation of a relief image without any development step (/). [Pg.399]

Since polymers with tetrasubsltuted centers are difficult to synthesize, two main types of positive resists have been dlsclosed. Polymethylmethacrylate r polymethyl Isopropenyl ketone hich undergo side chain elimination and subsequent main chain fracture have been used as positive electron beam resists (cf. [Pg.120]

In this article we will describe two different types of positive electron-beam resists, which were briefly reported in our previous communications (2,3). One is the homopolymer or copolymer with methyl methacrylate and a-substituted benzyl methacrylate, which forms methacrylic acid units in the polymer chain on exposure to an electron-beam and can be developed by using an alkaline solution developer. In this case, the structural change in the side group of the polymer effectively alters the solubility properties of the exposed polymer, and excellent contrast between the exposed and unexposed areas is obtained. The other is a self developing polyaldehyde resist, which is depolymerized into a volatile monomer upon electron-beam exposure. The sensitivity was extremely high without using any sensitizer. [Pg.399]

As discussed previously, an optional postexposure, predevelopment bake can reduce problems with the standing-wave effect in DNQ-novolac positive resists. However, such a postexposure bake step is indispensable in the image reversal of positive resists (37-41) and certain resists based on chemical amplification of a photogenerated catalyst (64-67, 77, 78). For both types of resists, the chemistry that differentiates between exposed and unexposed areas does not occur solely during irradiation. Instead, differentiation occurs predominantly during a subsequent bake. Therefore, to obtain acceptable CD control in these systems, the bake conditions must be carefully optimized and monitored. [Pg.370]

Ambient temperature variations can affect the accuracy and reliability of certain types of position indication instrumentation. Variations in ambient temperature can directly affect the resistance of components in the instrumentation circuitry, and, therefore, affect the calibration of electric/electronic equipment. The effects of temperature variations are reduced by the design of the circuitry and by maintaining the position indication instrumentation in the proper environment, where possible. [Pg.131]

An infusion control device (ICD) is a device that maintains a constant infusion rate in a gravity flow system (controller) or via a positive pressure pump. A positive pressure pump is a device that provides mechanical pressure (2-12 psi) to overcome the resistance to flow in the vessels. The types of positive pressure pumps are categorized according to how they deliver the solution and their degree of precision in the flow rate. Positive pressure pumps include peristaltic pumps, cassette pumps, syringe pumps, non-electiic or disposable pumps, and patient-controlled analgesic... [Pg.1010]

Bowden and his coworkers(j).) proposed a new type of positive electron beam resist which consists of an alkali-soluble novolac and polymeric dissolution inhibitor. The positive working mechanism of this new type positive resist( NPR ) is similar to that for the conventional positive photoresist 10). It was also found that poly(2-methylpentene-l sulfone)( PMPS ) is good as a polymeric dissolution inhibitor for NPR(lil). In addition, it was clarified that one of the difficulties with NPR is phase separation in the resist films(10)(n). [Pg.168]

The combination of these families of drug transporters has resulted in a variety of resistant phenotypes in both gram-negative and gram-positive bacteria. However, this type of drug resistance is far less common in bacteria than it is in cancer cell drug resistance. [Pg.381]

Utilizing the anionic polymerization technique, two types of new polymer were prepared. Poly(silamine) was decomposed by the EB-exposure, which can be developed with water. Thus, poly(silamine) is anticipated as new types of positive water developing EB-resist having high etching resistance. [Pg.288]

It is characteristic for battery manufacture that lead dioxide (Pb02) as the charged state of the active material is always generated by electrochemical oxidation. Thus, electron-conducting bridges are established between the fine particles, and a matrix is formed of comparatively low electronic resistance. Three general types of positive electrodes are mainly used today Plante, pasted, and tubular plates, which vary not only in their design but also in the way they are manufactured. [Pg.181]

The second type of internal resistance is electrical resistance—r2- The influences of temperature and electrolyte thickness on electronic internal resistance of the electrolytes are not well known. The electronic conductivity values of solid oxide electrolytes are spread across a very wide range. They do not have a major impact on calculated cell voltage for high fuel utilization factors. It is hard to measure the electronic resistance of solid oxide electrolytes since they have both conductivities (ionic and electronic) simultaneously, which gives total electrical resistance. It should be noted that decreasing electrolyte thickness reduces ionic resistance (positive effect), but also probably reduces electronic resistance (negative effect). [Pg.104]

Acid-C t lyzed Chemistry. Acid-catalyzed reactions form the basis for essentially all chemically amplified resist systems for microlithography appHcations (61). These reactions can be generally classified as either cross-linking (photopolymerization) or deprotection reactions. The latter are used to unmask acidic functionality such as phenohc or pendent carboxyhc acid groups, and thus lend themselves to positive tone resist apphcations. Acid-catalyzed polymer cross-linking and photopolymerization reactions, on the other hand, find appHcation in negative tone resist systems. Representative examples of each type of chemistry are Hsted below. [Pg.125]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

A possible adjunct to the laminate design procedure is a specific laminate failure criterion that is based on the maximum strain criterion. In such a criterion, all lamina failure modes are ignored except for fiber failure. That is, matrix cracking is regarded as unimportant. The criterion is exercised by finding the strains in the fiber directions of each layer. When these strains exceed the fiber failure strain in a particular type of layer, then that layer is deemed to have failed. Obviously, more laminae of that fiber orientation are needed to successfully resist the applied load. That is, this criterion allows us to preserve the identity of the failing lamina or laminae so that more laminae of that type (fiber orientation) can be added to the laminate to achieve a positive margin of safety. [Pg.453]


See other pages where Types of Positive Resists is mentioned: [Pg.327]    [Pg.286]    [Pg.327]    [Pg.286]    [Pg.555]    [Pg.163]    [Pg.366]    [Pg.169]    [Pg.555]    [Pg.191]    [Pg.425]    [Pg.163]    [Pg.151]    [Pg.63]    [Pg.125]    [Pg.127]    [Pg.133]    [Pg.490]    [Pg.370]    [Pg.384]    [Pg.350]    [Pg.371]    [Pg.501]    [Pg.401]    [Pg.347]    [Pg.78]    [Pg.336]    [Pg.509]    [Pg.89]    [Pg.27]    [Pg.125]    [Pg.944]    [Pg.65]    [Pg.119]    [Pg.182]    [Pg.103]    [Pg.81]   


SEARCH



Positive resist

Positive resists

© 2024 chempedia.info