Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tubular systems flow patterns

The analysis of two-phase tubular contactors and pipelines is complicated because of the variety of configurations that the two-phase mixture may assume in these systems. The design engineer must have knowledge of the flow pattern that results from a given set of operating conditions if the in situ quantities such as pressure drop, holdup of each phase, phase Reynolds numbers, and interfacial area are to be determined. These in situ quantities must be known if the rate of heat transfer is to be predicted. [Pg.14]

The two goals of this chapter were to provide a critical review of the current state of the art in the field of two-phase flow with heat transfer and to provide procedures which can be used for the design of tubular fluid-fluid systems. Both heat transfer without phase change and with phase change were discussed in detail. In each case the analysis was based on an understanding of the flow patterns and the hydrodynamics of the system. [Pg.48]

The analysis of tubular contactors for heat transfer with phase changes in fluid-fluid systems was shown to be heavily dependent on a proper understanding of two-phase hydrodynamics. It was shown that three basic flow patterns exist within a tube, each with a different heat-transfer mechanism. The formulation of the proper mass and energy models pinpointed three key... [Pg.48]

For a few highly idealized systems, the residence time distribution function can be determined a priori without the need for experimental work. These systems include our two idealized flow reactors—the plug flow reactor and the continuous stirred tank reactor—and the tubular laminar flow reactor. The F(t) and response curves for each of these three types of well-characterized flow patterns will be developed in turn. [Pg.392]

The responses of this system to ideal step and pulse inputs are shown in Figure 11.3. Because the flow patterns in real tubular reactors will always involve some axial mixing and boundary layer flow near the walls of the vessels, they will distort the response curves for the ideal plug flow reactor. Consequently, the responses of a real tubular reactor to these inputs may look like those shown in Figure 11.3. [Pg.392]

In this chapter, we describe several ideal types of reactors based on two modes of operation (batch and continuous), and ideal flow patterns (backmix and tubular) for the continuous mode. From a kinetics point of view, these reactor types illustrate different ways in which rate of reaction can be measured experimentally and interpreted operationally. From a reactor point of view, the treatment also serves to introduce important concepts and terminology of CRE (developed further in Chapters 12 to 18). Such ideal reactor models serve as points of departure or first approximations for actual reactors. For illustration at this stage, we use only simple systems. [Pg.25]

Flow patterns in a stirred tank (lumped parameter system) and a tubular reactor (distributed parameter system). [Pg.45]

A3/X°i, C° = X°3/X°, and 03= X 3/X°3. reverse osmosis system involving longitudinal feed flow pattern in the module (such as in spiral wound or tubular modules), let... [Pg.51]

Figure 19.3. Tubular and plate-and-frame membrane modules for reverse osmosis and ultrafiltration, (a) Construction and flow pattern of a single 1 in. dia tube with membrane coating on the inside in Table 19.4, the Ultracor model has seven tubes in a shell and the Supercor has 19 [Koch Membrane Systems (Abcor)]. (b) Assembly of a plate-and-frame ultrafiltration module (Danish Sugar Co.), (c) Flow in a plate-and-frame ultrafiltration module. Figure 19.3. Tubular and plate-and-frame membrane modules for reverse osmosis and ultrafiltration, (a) Construction and flow pattern of a single 1 in. dia tube with membrane coating on the inside in Table 19.4, the Ultracor model has seven tubes in a shell and the Supercor has 19 [Koch Membrane Systems (Abcor)]. (b) Assembly of a plate-and-frame ultrafiltration module (Danish Sugar Co.), (c) Flow in a plate-and-frame ultrafiltration module.
The intense heat dissipated by viscous flow near the walls of a tubular reactor leads to an increase in local temperature and acceleration of the chemical reaction, which also promotes an increase in temperature the local situation then propagates to the axis of the tubular reactor. This effect, which was discovered theoretically, may occur in practice in the flow of a highly viscous liquid with relatively weak dependence of viscosity on degree of conversion. However, it is questionable whether this approach could be applied to the flow of ethylene in a tubular reactor as was proposed in the original publication.199 In turbulent flow of a monomer, the near-wall zone is not physically distinct in a hydrodynamic sense, while for a laminar flow the growth of viscosity leads to a directly opposite tendency - a slowing-down of the flow near the walls. In addition, the nature of the viscosity-versus-conversion dependence rj(P) also influences the results of theoretical calculations. For example, although this factor was included in the calculations in Ref.,200 it did not affect the flow patterns because of the rather weak q(P) dependence for the system that was analyzed. [Pg.148]

The flow patterns, composition profiles, and temperature profiles in a real tubular reactor can often be quite complex. Temperature and composition gradients can exist in both the axial and radial dimensions. Flow can be laminar or turbulent. Axial diffusion and conduction can occur. All of these potential complexities are eliminated when the plug flow assumption is made. A plug flow tubular reactor (PFR) assumes that the process fluid moves with a uniform velocity profile over the entire cross-sectional area of the reactor and no radial gradients exist. This assumption is fairly reasonable for adiabatic reactors. But for nonadiabatic reactors, radial temperature gradients are inherent features. If tube diameters are kept small, the plug flow assumption in more correct. Nevertheless the PFR can be used for many systems, and this idealized tubular reactor will be assumed in the examples considered in this book. We also assume that there is no axial conduction or diffusion. [Pg.255]

This situation can be seen clearly in the distribution pattern observed by Kobayashi et al. [4] shown in Figure 20.23 (the arrangement of monomer inlet) and Figure 20.24 (the distribution of polymer deposition for corresponding cases). The slight asymmetry of the polymer deposition pattern can be attributed to the overall flow pattern existing in the entire reactor system. The principle of the polymer deposition is identical to that for the tubular reactor shown in Figure 20.17. [Pg.441]

Membrane processes are used to filter liquids. Instead of conventional filter materials (e.g. filter cloth, filter candles,) microporous membranes are employed with molecular size pores. First the industry had to learn how to manufacture membranes with controlled pore sizes. To optimise the filtration capacities specific filter structures had to be designed in which the liquid followed well defined flow patterns on one side of the membrane. Many different systems were developed for the varied applications, all having their advantages and also disadvantages, i.e. plate modules, tubular modules, spiral wound membranes, etc. Research and development in this field is far from being exhausted. Today membrane systems are available which are sufficiently resistant to chemical, mechanical and thermal stress. They are produced from plastic... [Pg.178]

The tubular reactor is a vessel through which the flow is continuous. There are several configurations of tubular reactors suitable for multiphase work, e.g. for liquid-solid and gas-liquid-solid compositions. The flow patterns in these systems are complex. A fixed bed reactor is packed with catalyst, typically formed into pellets of some shape, and if the feed is single phase, a simple tubular plug-flow reactor may suffice (Figure 1.1). Mixed component feeds can be handled in modifications to this. [Pg.8]

In contrast to the ideal CSTR, backmbdng is excluded in an ideal tubular reactor, characterized by a plug flow pattern of the fluid, with uniform radial composition and temperature. The material balance for a small volume system element (AV) shown in Figure 2.9 at the reactor steady state is written as... [Pg.39]

Tubular and hollow-fiber membrane systems can be operated in co-current flow (Figure 17-18B). Binary gas permeation with co-current flow can be analyzed with a staged model similar to that used for cross-flow except now yp y, and the flow pattern must be used to relate the permeate mole frac to the mole... [Pg.779]

The supposed flow patterns of a pure tubular flow and of that with a fluid/liquid interface as demonstrated by streamlines are shown in figure 2a and 2b, respectively. (The coordinate system is fixed to the interface moving together with it. The meniscus seems to stay still and the capillary wall to move at the mean velocity in the opposite direction.) The streamlines are straight lines parallel to the capillary wall in the case of the Hagen-Poiseuille flow (fig. 2a), whereas curved streamlines are formed in the presence of an interface (fig. 2b). The latter are directed towards the wall and the tube axis in the advancing and in the receding liquids, respectively. [Pg.114]

Specific surface areas of the catalysts used were determined by nitrogen adsorption (77.4 K) employing BET method via Sorptomatic 1900 (Carlo-Erba). X-ray difiraction (XRD) patterns of powdered catalysts were carried out on a Siemens D500 (0 / 20) dififactometer with Cu K monochromatic radiation. For the temperature-programmed desorption (TPD) experiments the catalyst (0.3 g) was pre-treated at diflferent temperatures (100-700 °C) under helium flow (5-20 Nml min ) in a micro-catalytic tubular reactor for 3 hours. The treated sample was exposed to methanol vapor (0.01-0.10 kPa) for 2 hours at 260 °C. The system was cooled at room temperature under helium for 30 minutes and then heated at the rate of 4 °C min . Effluents were continuously analyzed using a quadruple mass spectrometer (type QMG420, Balzers AG). [Pg.173]

If a tubular-flow reactor is equipped with a recycle arrangement, as shown in Fig. 7, the mixing pattern is somewhere between the two ideal limits of plug flow and ideal back-mixing. Such a system can be useful for controlling product distribution from a complex reaction. Consider the simultaneous occurrence of reactions (17) and (105) where reaction (105) is second-order and B is the desired product. The discussion above would suggest that plug flow would enhance the relative yield of B but back-... [Pg.140]

In the development and design of modular assemblies housing a multiplicity of externally wound tubular membrane elements, the following factors were considered effectiveness of element packing arrangements and density, feed stock distribution patterns for controlled and uniform feed flow across membrane surfaces, sealing reliability of modular sub-assemblies, overall system reliability, module serviceability and ease of maintenance, system productibil-ity, and economic viability. [Pg.202]


See other pages where Tubular systems flow patterns is mentioned: [Pg.380]    [Pg.249]    [Pg.105]    [Pg.145]    [Pg.407]    [Pg.871]    [Pg.945]    [Pg.780]    [Pg.905]    [Pg.422]    [Pg.69]    [Pg.71]    [Pg.162]    [Pg.374]    [Pg.249]    [Pg.251]    [Pg.43]    [Pg.48]    [Pg.248]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 ]




SEARCH



Flow patterns

Flow system

Flowing systems 83

Tubular flow

© 2024 chempedia.info