Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CSTR ideal

Ideal PFR Ideal CSTR Ideal laminar Row reactor Segregation Maximum mixedness Dispersion Tanks in series... [Pg.1004]

Then, it can be affirmed that the fluidized bed does not behave as a reactor ideal. That is, their behavior differs of the flow in PFR or continuous stirred-tank reactor (CSTR) ideals. These particulars do not cover the scope of this chapter hence they will not be studied here. [Pg.584]

Reactors with idealized flow patterns are ideal reactors, and are simplifled borderline cases. Three cases are of particular importance (Figure 4.10.1), the ideal, that is, uniformly mixed batch reactor, the ideal plug flow reactor (PFR), where no axial mixing and complete (radial) mixing across is assumed, and the continuous stirred tank reactor (CSTR). Ideal reactors are popular in chemical engineering as they are easy to treat vith regard to their performance equations. [Pg.297]

Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

In an ideal continuously stirred tank reaclor (CSTR), the conditions are uniform throughout and the condition of the effluent is the same as the condition in the tank. When a batteiy of such vessels is employed in series, the concentration profile is step-shaped if the abscissa is the total residence time or the stage number. The residence time of individual molecules varies exponentially from zero to infinity, as illustrated in Fig. 7-2>e. [Pg.695]

Reac tors that are nominally CSTRs or PFRs may in practice deviate substantially from ideal mixing or nonmixing. This topic is developed at length in Sec. 23, so only a few summary statements are made here. More information about this topic also may be found in Nauman and Buffham (Mixing in Continuous Flow Systems, Wiley, 1983). [Pg.703]

Real reactors deviate more or less from these ideal behaviors. Deviations may be detected with re.sidence time distributions (RTD) obtained with the aid of tracer tests. In other cases a mechanism may be postulated and its parameters checked against test data. The commonest models are combinations of CSTRs and PFRs in series and/or parallel. Thus, a stirred tank may be assumed completely mixed in the vicinity of the impeller and in plug flow near the outlet. [Pg.2075]

Ideal CSTR Witt a step input of magnitude Cy the unsteady material balance is... [Pg.2083]

In an ideal CSTR, there are no gradients of temperature or composition, only the overall changes. [Pg.2099]

Peclet number independent of Reynolds number also means that turbulent diffusion or dispersion is directly proportional to the fluid velocity. In general, reactors that are simple in construction, (tubular reactors and adiabatic reactors) approach their ideal condition much better in commercial size then on laboratory scale. On small scale and corresponding low flows, they are handicapped by significant temperature and concentration gradients that are not even well defined. In contrast, recycle reactors and CSTRs come much closer to their ideal state in laboratory sizes than in large equipment. The energy requirement for recycle reaci ors grows with the square of the volume. This limits increases in size or applicable recycle ratios. [Pg.59]

Equations 8-109, 8-110, 8-111, and 8-112 are redueed to an ordinary tanks-in-series model when N = i and h = 0. For the equivalent number of ideal CSTRs, N is obtained by minimizing the residual sum of squares of the deviation between the experimental F-eurve and that predieted by Equation 8-109. The objeetive funetion is minimized from the expression... [Pg.722]

The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that frequently for both production and fundamental kinetic studies. Unfortunately, this name, abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises from the assumption in the analysis that the reactor is perfectly mixed, and that it is homogeneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). [Pg.383]

Thischapterhasbeendevotedtocontinuousreactorsandtheiranalyses.Wehaveexamined the powerful idealizations of the CSTR and PER. Pseudo-steady states and steady states... [Pg.457]

The flow of slurry within all the agitated erystallizer vessels illustrated is elearly eomplex and mixed to a greater or lesser extent at the mieroseopie level. In order to ease theoretieal analysis a new type of vessel therefore had to be invented This idealized vessel has beeome known as the eontinuous MSMPR erystallizer, after Randolph and Lawson (1988). The MSMPR is the erystal-lization analogue of the CSTR (eontinuous stirred tank reaetor) employed in idealizations of ehemieal reaetion engineering. [Pg.65]

A CSTR is a deliberately backmixed reactor and, in principle, its effluent temperature and composition are the same as the reactor contents. With an ideal CSTR, the feed blends instantaneously with the uniform reactor contents. In actual practice, of course, we find that feed blending time may be protracted, and varying degrees of segregation, short circuiting and stagnation exist in the reactor contents. [Pg.93]

The described experimental rig for the anionic polymerisation of dienes has been shown to behave as an ideal CSTR. The mathematical model developed allows the prediction of the MWD at future points in the reactor history, once suitable kinetic parameters have been estimated. [Pg.294]

Ideal CSTR (continuous stirred tank reactor) behavior is approached when the mean residence time is 5-10 times the length of time needed to achieve homogeneity, which is accomplished with 500-2000 revolutions of a properly designed stirrer. [Pg.15]

There are two important types of ideal, continuous-flow reactors the piston flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR. They behave very diflerently with respect to conversion and selectivity. The piston flow reactor behaves exactly like a batch reactor. It is usually visualized as a long tube as illustrated in Figure 1.3. Suppose a small clump of material enters the reactor at time t = 0 and flows from the inlet to the outlet. We suppose that there is no mixing between this particular clump and other clumps that entered at different times. The clump stays together and ages and reacts as it flows down the tube. After it has been in the piston flow reactor for t seconds, the clump will have the same composition as if it had been in a batch reactor for t seconds. The composition of a batch reactor varies with time. The composition of a small clump flowing through a piston flow reactor varies with time in the same way. It also varies with position down the tube. The relationship between time and position is... [Pg.17]

The component material balances for an ideal CSTR are the following set of algebraic equations ... [Pg.118]

A gas-phase CSTR with prescribed values for Pout and Tout is particularly simple when ideal gas behavior can be assumed. The molar density in the reactor will be known and independent of composition. [Pg.128]

We have considered two types of ideal flow reactor the piston flow reactor and the perfectly mixed CSTR. These two ideal types can be connected together in a variety of series and parallel arrangements to give composite reactors that are... [Pg.133]

Compare this result with that for a single, ideal reactor having the same input concentration, throughput, and total volume. Specifically, compare the outlet concentration of the composite reactor with that from a single CSTR having a... [Pg.134]

The above computation is quite fast. Results for the three ideal reactor t5T)es are shown in Table 6.3. The CSTR is clearly out of the running, but the difference between the isothermal and adiabatic PFR is quite small. Any reasonable shell-and-tube design would work. A few large-diameter tubes in parallel would be fine, and the limiting case of one tube would be the best. The results show that a close approach to adiabatic operation would reduce cost. The cost reduction is probably real since the comparison is nearly apples-to-apples. ... [Pg.198]

Example 6.7 Determine optimal reactor volumes and operating temperatures for the three ideal reactors a single CSTR, an isothermal PER, and an adiabatic PER. [Pg.202]

The design equations for a chemical reactor contain several parameters that are functions of temperature. Equation (7.17) applies to a nonisothermal batch reactor and is exemplary of the physical property variations that can be important even for ideal reactors. Note that the word ideal has three uses in this chapter. In connection with reactors, ideal refers to the quality of mixing in the vessel. Ideal batch reactors and CSTRs have perfect internal mixing. Ideal PFRs are perfectly mixed in the radial direction and have no mixing in the axial direction. These ideal reactors may be nonisothermal and may have physical properties that vary with temperature, pressure, and composition. [Pg.227]

Copolymerizations. The uniform chemical environment of a CSTR makes it ideally suited for the production of copolymers. If the assumption of perfect mixing is justified, there will be no macroscopic composition distribution due to monomer drift, but the mixing time must remain short upon scaleup. See Sections 1.5 and 4.4. A real stirred tank or loop reactor will more closely... [Pg.495]

The ideal flow reactors are the CSTR and the PFR. (This chapter later introduces a third kind of ideal reactor, the segregated CSTR, but it has the same distribution of residence times as the regular, perfectly mixed CSTR.) Real reactors sometimes resemble these ideal types or they can be assembled from combinations of the ideal types. [Pg.545]

The length (height) and the diameter of tank reactor are close to each other or at least of the same order of magnitude. Tank reactors are usually equipped with a stirrer. In an ideal continuous stirred-tank reactor (CSTR), a feed stream is instantaneously mixed with the reaction mixture before molecules of the stream start to react. In reality, small reactors with vigorous stirring where relatively slow reactions occur behave as if they were ideal CSTRs. The... [Pg.259]


See other pages where CSTR ideal is mentioned: [Pg.223]    [Pg.424]    [Pg.93]    [Pg.378]    [Pg.223]    [Pg.424]    [Pg.93]    [Pg.378]    [Pg.521]    [Pg.2067]    [Pg.2070]    [Pg.2075]    [Pg.2085]    [Pg.2102]    [Pg.663]    [Pg.383]    [Pg.23]    [Pg.65]    [Pg.134]    [Pg.141]    [Pg.155]    [Pg.270]    [Pg.317]    [Pg.260]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



CSTRs

© 2024 chempedia.info