Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

True adsorbent volume

True adsorbent volume. Vft. The weight of the adsorbent packing divided by adsorbent density. [Pg.32]

If the true specific volume of the solid be v and has adsorbed on it a gms. of the liquid of specific volume, in the compressed state, of Va the total volume of solid and film will be V + awa. [Pg.175]

Because of the analogy between simulated and true counter-current flow, TMB models are also used to design SMB processes. As an example, the transport dispersive model for batch columns can be extended to a TM B model by adding an adsorbent volume flow Vad (Fig. 6.38), which results in a convection term in the mass balance with the velocity uads. Dispersion in the adsorbent phase is neglected because the goal here is to describe a fictitious process and transfer the results to SMB operation. For the same reason, the mass transfer coefficient feeff as well as the fluid dispersion Dax are set equal to values that are valid for fixed beds. [Pg.301]

Under these conditions, overlapping pore potentials compress the adsoihate molecules into a smaller volume than they would otherwise adsorbate molecules into a smaller volume than they would otherwise occupy. The concept of surface area becomes meaningless and the limiting amount adsorbed is a measure of micropore volume rather than monolayer surface. The determined volumes will be higher than the true pore volumes, since the adsorbate molecules will be in a condensed liquid state which may approach the volume they would occupy in the solid state. Type 1 isotherms may also occur for adsorption on high energy level surfaces [S]. [Pg.42]

In addition to water, virtually any organic polar modifier may be used to control solute retention in liquid-solid chromatography. Alcohols, alkyl2aiines, acetonitrile, tetrahydrofuran and ethyl acetate in volumes of less than one percent can be incorporated into nonpolar mobile phases to control adsorbent activity. In general, column efficiency declines for alcohol-moderated eluents cogqpared to water-moderated eluent systems. Many of the problems discussed above for water-moderated eluents are true for organic-moderated eluents as well. [Pg.198]

The identification of species adsorbed on surfaces has preoccupied chemists and physicists for many years. Of all the techniques used to determine the structure of molecules, interpretation of the vibrational spectrum probably occupies first place. This is also true for adsorbed molecules, and identification of the vibrational modes of chemisorbed and physisorbed species has contributed greatly to our understanding of both the underlying surface and the adsorbed molecules. The most common method for determining the vibrational modes of a molecule is by direct observation of adsorptions in the infrared region of the spectrum. Surface spectroscopy is no exception and by far the largest number of publications in the literature refer to the infrared spectroscopy of adsorbed molecules. Up to this time, the main approach has been the use of conventional transmission IR and work in this area up to 1967 has been summarized in three books. The first chapter in this volume, by Hair, presents a necessarily brief overview of this work with emphasis upon some of the developments that have occurred since 1967. [Pg.300]

For the assessment of the extent of change of the phase ratio of a HPLC column system with temperature or another experimental condition, several different experimental approaches can be employed. Classical volumetric or gravimetric methods have proved to be unsuitable for the measurement of the values of the stationary phase volume Vs or mobile phase volume Vm, and thus the phase ratio ( = Vs/Vm). The tracer pulse method266,267 with isotopically labeled solutes as probes represents a convenient experimental procedure to determine Vs and V0, where V0 is the thermodynamic dead volume of the column packed with a defined chromatographic sorbent. The value of Vm can be the calculated in the usual manner from the expression Vm = Eo — Vs. In addition, the true value of Vm can be independently measured using an analyte that is not adsorbed to the sorbent and resides exclusively in the mobile phase. As a further independent measure, the extent of change of 4> with T can be assessed with weakly interacting neutral or... [Pg.140]

Helium is often used in adsorption manometry for the determination of the dead space volume (see Chapter 3), but this procedure is based on the presupposition that the gas is not adsorbed at ambient temperature and that it does not penetrate into regions of the adsorbent structure which are inaccessible to the adsorptive molecules. In fact, with some microporous adsorbents, significant amounts of helium adsorption can be detected at temperatures well above the normal boiling point (4.2 K). For this reason, the apparent density (or so-called true density ) determined by helium pycnometry (Rouquerol et al., 1994) is sometimes dependent on the operational temperature and pressure (Fulconis, 1996). [Pg.273]

The use of the true volume of the liquid phase in the column as the void volume can lead to the principal difficulties in the interpretation of the retention of polar analytes that are also excluded from the contact with the adsorbent surface. The retention volume of these analytes will be lower than the column void volume, and thus their retention factors will be negative. A logarithm of negative retention factors does not exist that shows the applicability limit of the approximate theory described above. In a general sense the void volume should not change as a function of the type and organic composition. Table 2-1 demonstrates the compatibility of the void volume measured using different thermodynamically consistent methods. [Pg.49]

Other Experimental Methods. It is probably suitable to discuss here column porous structure. Porous space of a conventional packed column consists of the interparticle volume (Vip—space around particles of packing) and pore volume (Vp— space inside porous particles). The sum of those two constitutes the column void volume. The void volume marker ( unretained ) should be able to evenly distribute itself in these volumes while moving through the column. Only in this case the statistical center mass of its peak will represent the true volume of the Uquid phase in the column. In other words, its chromatographic behavior should be similar to that of the eluent molecules in a monocomponent eluent. If a chosen void volume marker compound has some preferential interaction with the stationary phase compared to that of the eluent molecules, it will show positive retention and could not be used as void marker. If on the other hand it has weaker interaction, it will be excluded from the adsorbent surface and will elute faster than the real void time, meaning that it also could not be used. For any analytical applications (when no thermodynamic dependences are not extracted from experimental data), 10% or 15% error in the determination of the void volume are acceptable. It is generally recommended to avoid elution of the component of interest with a retention factor lower than 1.5. Accurate methods for the determination of the column void volume are discussed in Chapter 2. [Pg.130]

Most adsorption data were collected by volumetric method until microbalance of high sensitivity appeared few years ago. It can hardly say which method is superior to the other, and both methods need the value of the skeleton volume of sample adsorbent. This volume has to be subtracted from the whole volume of the sample container to obtain the volume of void space, which is used for the calculation of the amount adsorbed. The skeleton volume of sample adsorbent was directly used in the calculation of buoyancy correction in gravimetric method. This volume was usually determined by helium assuming the amount of helium adsorbed was negligible. If, however, helium adsorption cannot be omitted, error would yield in the skeleton volume and, finally, in the calculated amount adsorbed. However, the effect of helium adsorption would be much less for volumetric method if the skeleton volume is considerably less than the volume of void space, but the volume of void space cannot affect buoyancy correction. In this respect, helium adsorption would result in less consequence on volumetric method especially when the skeleton volume was determined at room temperature and pressures less than IS MPa. The skeleton volume (or density) was taken for a parameter in modeling process in some gravimetric measurements. However, the true value of skeleton volume (or density) can hardly be more reliable basing on a fitted parameter than on a measured value. Therefore, one method of measurement cannot expel the other up to now, and the consequence of helium adsorption in the measured amount adsorbed should be estimated appropriately. [Pg.93]


See other pages where True adsorbent volume is mentioned: [Pg.104]    [Pg.1004]    [Pg.104]    [Pg.1004]    [Pg.385]    [Pg.399]    [Pg.284]    [Pg.260]    [Pg.293]    [Pg.76]    [Pg.242]    [Pg.115]    [Pg.269]    [Pg.32]    [Pg.6]    [Pg.519]    [Pg.125]    [Pg.244]    [Pg.293]    [Pg.158]    [Pg.523]    [Pg.507]    [Pg.146]    [Pg.204]    [Pg.23]    [Pg.178]    [Pg.571]    [Pg.211]    [Pg.250]    [Pg.58]    [Pg.75]    [Pg.320]    [Pg.338]    [Pg.1420]    [Pg.339]    [Pg.258]    [Pg.100]    [Pg.145]    [Pg.694]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Adsorbent volume

True

© 2024 chempedia.info