Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transsulfuration methionine

Fig. 10.1. Defects of transmethylation (methioninehomocysteine), transsulfuration (methionine sulfate), and remethylation (homocysteine - methionine) enzymes of sulfur amino acid metabolism 10.1, methionine adenosyltransferase 10.2, cystathionine ) -synthase 10.3, y-cystathionase 10.4, sulfite oxidase 10.5, molybdenum cofactor 10.6, methylenetetrahydrofolate reductase 10.7 and 10.8, methionine synthase. Fig. 10.1. Defects of transmethylation (methioninehomocysteine), transsulfuration (methionine sulfate), and remethylation (homocysteine - methionine) enzymes of sulfur amino acid metabolism 10.1, methionine adenosyltransferase 10.2, cystathionine ) -synthase 10.3, y-cystathionase 10.4, sulfite oxidase 10.5, molybdenum cofactor 10.6, methylenetetrahydrofolate reductase 10.7 and 10.8, methionine synthase.
The transsulfuration pathway (Fig. 40-4) entails the transfer of the sulfur atom of methionine to serine to yield cysteine. The first step is activation of methionine, which reacts with ATP to form S-adenosylmethionine (Fig. 40-4 reaction 1). This compound is a key methyl donor and plays a prominent role in the synthesis of several... [Pg.674]

Hydrolysis of SAM After donation of the methyl group, S-adenosylhomocysteine is hydrolyzed to homocysteine aid adenosine. Homocysteine has two fates. If there is a deficiency of methionine, homocysteine may be remethylated to methionine (see Figure 20.8). If methionine stores are adequate, homocysteine rmty enter the transsulfuration pathway, where it is converted to cysteine. [Pg.262]

When present in excess methionine is toxic and must be removed. Transamination to the corresponding 2-oxoacid (Fig. 24-16, step c) occurs in both animals and plants. Oxidative decarboxylation of this oxoacid initiates a major catabolic pathway,305 which probably involves (3 oxidation of the resulting acyl-CoA. In bacteria another catabolic reaction of methionine is y-elimination of methanethiol and deamination to 2-oxobutyrate (reaction d, Fig. 24-16 Fig. 14-7).306 Conversion to homocysteine, via the transmethylation pathway, is also a major catabolic route which is especially important because of the toxicity of excess homocysteine. A hereditary deficiency of cystathionine (3-synthase is associated with greatly elevated homocysteine concentrations in blood and urine and often disastrous early cardiovascular disease.299,307 309b About 5-7% of the general population has an increased level of homocysteine and is also at increased risk of artery disease. An adequate intake of vitamin B6 and especially of folic acid, which is needed for recycling of homocysteine to methionine, is helpful. However, if methionine is in excess it must be removed via the previously discussed transsulfuration pathway (Fig. 24-16, steps h and z ).310 The products are cysteine and 2-oxobutyrate. The latter can be oxidatively decarboxylated to propionyl-CoA and further metabolized, or it can be converted into leucine (Fig. 24-17) and cysteine may be converted to glutathione.2993... [Pg.1389]

Cysteine is formed in plants and in bacteria from sulfide and serine after the latter has been acetylated by transfer of an acetyl group from acetyl-CoA (Fig. 24-25, step f). This standard PLP-dependent (3 replacement (Chapter 14) is catalyzed by cysteine synthase (O-acetylserine sulfhydrase).446 447 A similar enzyme is used by some cells to introduce sulfide ion directly into homocysteine, via either O-succinyl homoserine or O-acetyl homoserine (Fig. 24-13). In E. coli cysteine can be converted to methionine, as outlined in Eq. lb-22 and as indicated on the right side of Fig. 24-13 by the green arrows. In animals the converse process, the conversion of methionine to cysteine (gray arrows in Fig. 24-13, also Fig. 24-16), is important. Animals are unable to incorporate sulfide directly into cysteine, and this amino acid must be either provided in the diet or formed from dietary methionine. The latter process is limited, and cysteine is an essential dietary constituent for infants. The formation of cysteine from methionine occurs via the same transsulfuration pathway as in methionine synthesis in autotrophic organisms. However, the latter use cystathionine y-synthase and P-lyase while cysteine synthesis in animals uses cystathionine P-synthase and y-lyase. [Pg.1407]

SAM) by methionine adenosyltransferase. SAM serves as a methyl donor for a variety of methyl acceptors, including DNA, protein, neurotransmit-ters, and phospholipids. 5-Adenosylhomocysteine (SAH) is produced following methyl donation by SAM, and homocysteine is formed through the liberation of adenosine from SAH by the enzyme SAH hydrolase. Unlike methionine and cysteine, homocysteine is not incorporated into polypeptide chains during protein synthesis. Instead, homocysteine has one of two metabolic fates transsulfuration or remethylation to methionine. [Pg.227]

The transsulfuration pathway involves conversion of homocysteine to cysteine by the sequential action of two pyridoxal phosphate (vitamin B6)-dependent enzymes, cystathionine- 5-synthase (CBS) and cystathionine y-lyase (Fig. 21-2). Transsulfuration of homocysteine occurs predominantly in the liver, kidney, and gastrointestinal tract. Deficiency of CBS, first described by Carson and Neill in 1962, is inherited in an autosomal recessive pattern. It causes homocystinuria accompanied by severe elevations in blood homocysteine (>100 (iM) and methionine (>60 (iM). Homocystinuria due to deficiency of CBS occurs at a frequency of about 1 in 300,000 worldwide but is more common in some populations such as Ireland, where the frequency is 1 in 65,000. Clinical features include blood clots, heart disease, skeletal deformities, mental retardation, abnormalities of the ocular lens, and fatty infiltration of the fiver. Several different genetic defects in the CBS gene have been found to account for loss of CBS activity. [Pg.227]

Cysteine is considered a nonessential nutrient because it can be synthesized from methionine via the transsulfuration pathway (Figs. 21-1 and 21-2). Production of cysteine is metabolically important because it serves as a source of sulfur for incorporation into proteins and detoxification reactions. A lack of cysteine needed for incorporation into the structural protein collagen may be responsible for the musculoskeletal abnormalities seen in patients with CBS deficiency. A major metabolic use of cysteine is in the production of glutathionine (y-glutamylcysteinylglycine), an important antioxidant. Another important pathway for cysteine metabolism is its oxidation to cysteinesulfinate, which serves as a precursor for taurine, an amino acid that stabilizes cell membranes in the brain. [Pg.227]

Measurement of blood tHcy is usually performed for one of three reasons (1) to screen for inborn errors of methionine metabolism (2) as an adjunctive test for cobalamin deficiency (3) to aid in the prediction of cardiovascular risk. Hyperhomocysteinemia, defined as an elevated level of tHcy in blood, can be caused by dietary factors such as a deficiency of B vitamins, genetic abnormalities of enzymes involved in homocysteine metabolism, or kidney disease. All of the major metabolic pathways involved in homocysteine metabolism (the methionine cycle, the transsulfuration pathway, and the folate cycle) are active in the kidney. It is not known, however, whether elevation of plasma tHcy in patients with kidney disease is caused by decreased elimination of homocysteine in the kidneys or by an effect of kidney disease on homocysteine metabolism in other tissues. Additional factors that also influence plasma levels of tHcy include diabetes, age, sex, lifestyle, and thyroid disease (Table 21-1). [Pg.230]

In the biosynthesis of cysteine, the sulfur comes from methionine by transsulfuration, and the carbon skeleton and the amino group are provided by serine (Figure 17-16). Cysteine regulates its own formation by functioning as an allosteric inhibitor of cystathionine y-lyase, a-Ketobutyrate is metabolized to succinyl-CoA by way of propionyl-CoA and methylmalonyl-CoA. [Pg.354]

Fig. 1 GSH synthesis and methylation pathways in neuronal cells. Cysteine for GSH synthesis is provided by either uptake via EAAT3 or via transsulfuration of homocysteine (HCY), although transsulfuration is limited in neuronal cells, increasing the importance of uptake. Methionine synthase activity in neurons requires methylcobalamin (MeCbl), whose synthesis is GSH dependent. Dopamine-stimulated PLM is dependent upon methionine synthase activity. Methionine synthase activity determines levels of the methyl donor SAM and the methylation inhibitor SAH, affecting the efficiency of a large number of cellular methylation reactions. Fig. 1 GSH synthesis and methylation pathways in neuronal cells. Cysteine for GSH synthesis is provided by either uptake via EAAT3 or via transsulfuration of homocysteine (HCY), although transsulfuration is limited in neuronal cells, increasing the importance of uptake. Methionine synthase activity in neurons requires methylcobalamin (MeCbl), whose synthesis is GSH dependent. Dopamine-stimulated PLM is dependent upon methionine synthase activity. Methionine synthase activity determines levels of the methyl donor SAM and the methylation inhibitor SAH, affecting the efficiency of a large number of cellular methylation reactions.
As illustrated in Fig. 1, methionine synthase is positioned at the intersection between transsulfuration and methylation pathways. As a consequence, its level of activity exerts control over cellular redox status, since it determines the proportion of HCY that will be diverted toward cysteine and GSH synthesis. Methionine synthase activity is exceptionally sensitive to inhibition during oxidative stress, primarily because its cobalamin cofactor is easily oxidized (Liptak and Brunold, 2006). This allows methionine synthase to serve as a redox sensor, lowering its activity whenever the level of oxidation increases, until increased GSH synthesis brings the system back into balance. Electrophilic compounds, such as oxygen-containing xenobiotic metabolites, also react with cobalamin, inactivating the enzyme and increasing diversion of HCY toward GSH synthesis (Watson et al., 2004). Thus, methionine synthase is a sensor of both redox and xenobiotic status. [Pg.187]

Cystathionine is the first intermediate metabolite in transsulfuration, formed from HCY and serine by cystathionine-fi-synthase, a redox-sensitive, heme-containing enzyme (Banerjee et al., 2003), whose activity is lower in males vs. females (Vitvitsky et al., 2007). The higher levels of cystathionine in human brain reflect a strong diversion of HCY to transsulfuration (i.e., low methionine synthase activity and high cystathionine-f)-synthase activity), in conjunction with a decreased conversion of cystathionine to cysteine. As illustrated in Fig. 1, this indicates impaired transsulfuration in human brain. Low transsulfuration activity relative to other tissues has been described in rat or mouse brain (Finkelstein, 1990), although a... [Pg.188]

While four domains of methionine synthase bind reaction components (HCY, SAM, cobalamin, and methylfolate), the fifth domain, known as the Cap domain, hovers above cobalamin while it is in its readily oxidized Cob(I) state, limiting access of reactive oxygen species or electrophilic substances. As such, the Cap domain restricts inactivation of methionine synthase and consequently promotes methylation over transsulfuration. In rt-PCR smdies using RNA from cultured human neuroblastoma cells, we found that the Cap sequence, corresponding to... [Pg.190]

Selenomethionine metabolism to selenide and the incorporation into selenium-specific proteins may occur by two pathways metabolism to methane selenol and selenide or via selenocysteine. Evidence that the incorporation of selenium from selenomethionine into protein is by the transsulfuration pathway (methionine to cysteine) comes from studies of selenomethionine metabolism in lymphoblast cell lines deficient in cystathionine lyase and cystathionine synthetase, enzymes of the transsulfuration pathway (Beilstein and Whanger 1992). Deficiency in these enzymes greatly reduces the incorporation of selenomethionine into glutathione peroxidase. [Pg.164]

Cystathionine y-synthase (CGS) is a rather unique PLP-enzyme that catalyzes a transsulfuration reaction important in microbial methionine biosynthesis. It is the only known enzyme whose function is the catalysis of a PLP-dependent replacement reaction at the y-carbon of the amino acid substrate the succinyl moiety of O-succinyl-L-homoserine is replaced by i-Cys to give the thioether linkage of L,/.-cystathionine (scheme II). In the absence of L-Cys, the enzyme catalyzes a net y-elimination reaction from OSHS (scheme II). Because both reactions require the elimination of succinate, the catalytic pathways must diverge from a common reaction intermediate. It was originally hypothesized that a vinylglycine quinonoidal intermediate (structure 11)... [Pg.235]

CGS catalyzes the 7-replacement reaction of an activated form of L-homoserine with L-cysteine, leading to cystathionine. 0-Succinyl-L-homoserine (l-OSHS), 0-acetyl-L-homoserine (OAHS), and 0-phospho-L-homoserine (OPHS) are substrates for CGS ftom bacteria, fungi, and plants, respectively. The plant enzyme is also able to convert the microbial substrates, albeit at much higher values. This reaction is the first step in the transsulfuration pathway that converts L-Cys into L-homocysteine, the immediate precursor of L-methionine. The 0-activated L-homoserine substrate is situated at a metabolic branch point between L-Met and L-Thr biosynthesis, and which substrate is used by CGS depends on the species. In analogy with TS, CGS is tightly regulated by SAM concentration in plants. ... [Pg.309]

Autotrophic organisms synthesize methionine from asparfafe as shovm in the lower right side of Fig. 24-13. This involves fransfer of a sulfur atom from cysfeine info homocysfeine, using the carbon skeleton of homoserine, the intermediate cystathionine, and two PLP-dependent enzymes, cystathionine y-synthase and cystathionine p-lyase. This transsulfuration sequence (Fig. 24-13, Eq. 14-33) is essentially irreversible because of the cleavage to pyruvate and NH4+ by the P-lyase. Nevertheless, this transsulfuration pathway operates in reverse in the animal body, which uses two different PLP enzymes, cystathionine P s3mthase (which also contains a bound heme) and cystathionine y-lyase (Figs. 24-13,24-16, steps h and i), in a pathway that metabolizes excess methionine. [Pg.475]

An increased plasma level of homocysteine is regarded as a risk factor for cardiovascular disease and the development of arteriosclerosis. Homocysteine concentrations in plasma are reduced by remethylation and transsulfuration (Komarnisky et al. 2003). The remethylation is catalyzed by methionine synthase, which in turn is influenced by vitamin B12 and folate. The transsulfura-tions depend on cystathionine 3-synthase. A dietary deficiency of vitamins B, B12 and folate, accompanied by a high protein intake, can cause hyperhomocystinemia in humans (Jacobsen 1998). Furthermore, a genetic disorder of enzymes involved in the metabolism of homocysteine leads to hypercystinuria (Mudd et al. 1989). [Pg.1313]

Methionine is an essential amino acid with a unique role in the initiation of protein synthesis, hi addition, by conversion to 5 -adenosyhnethionine, it serves as the major methyl group donor involved in the formation of creatinine and choline, in the methylation of bases in RNA, and as the source of the aminopropyl group in the formation of polyamines. Finally, in relationship to classical homocystinuria, it is converted by way of homocysteine and cystathionine in a series of reactions termed as the transsulfuration pathway (Fig. 20.3). [Pg.416]

As noted above, cystathionine formation is the other major fate of methionine. The condensation of homocysteine with serine is catalyzed by the vitamin requiring enzyme cystathionine P-synthase. In the last step of the transsulfuration sequence, cystathionine undergoes cleavage to cysteine and a-ketobutyrate in yet another enzyme reaction that requires pyridoxal phosphate. [Pg.416]

Since methionine has several pathways open to it, it is essential to know what factors control the direction that its metabolism takes. Studies in young adults have shown that the utilization of methyl groups is normally accounted for chiefly by creatinine formation. This reaction consumes more 5-adenosylmethionine than all other transmethylations together. However, examination of enzyme activities from these two pathways in fetal animals leads to the conclusion that remethylation preponderates over transsulfuration. Indeed, since y-cystathionase activity is immeasurable in human fetal liver and brain, not only is the remethylation sequence favored, but also cysteine then becomes an essential amino acid for the fetus and infant. [Pg.416]

Homocysteine is an intermediate metabolite generated during the metabolism of methionine, an essential sulfur-containing amino acid. The biochemical pathways involved in homocystinuria perform two important processes transsulfuration and remethylation (Fig. 14.1). [Pg.150]

Figure 29.6 Pathways for the metabolism of homocysteine. Normal transsulfuration requires cystathionine P-synthase with vitamin Bg as cofactor. Reme-thylation requires 5,10-methylenetetrahydrofolate reductase and methionine synthase. The latter requires folate as cosubstrate and vitamin Bi2 (cobalamin) as cofactor. An alternative remethylation pathway also exists using the cobalamin independent betaine-homocysteine methyltransferase (Robinson 2000). Figure 29.6 Pathways for the metabolism of homocysteine. Normal transsulfuration requires cystathionine P-synthase with vitamin Bg as cofactor. Reme-thylation requires 5,10-methylenetetrahydrofolate reductase and methionine synthase. The latter requires folate as cosubstrate and vitamin Bi2 (cobalamin) as cofactor. An alternative remethylation pathway also exists using the cobalamin independent betaine-homocysteine methyltransferase (Robinson 2000).
Figure 30.2 Homocysteine metabolism and its B vitamin cofactors. Homocysteine can be reversiblely methylated to methionine or irreversibly transsulfu-rated to cysteine. The remethylation is dependent on vitamin B12, folate and vitamin B2. The transsulfuration needs vitamin Bs as cofactor. Thus, plasma homocysteine is inversely related to the levels of the actual B vitamins. Figure 30.2 Homocysteine metabolism and its B vitamin cofactors. Homocysteine can be reversiblely methylated to methionine or irreversibly transsulfu-rated to cysteine. The remethylation is dependent on vitamin B12, folate and vitamin B2. The transsulfuration needs vitamin Bs as cofactor. Thus, plasma homocysteine is inversely related to the levels of the actual B vitamins.
Homocysteine metabolism involves three key enzymes methionine synthase, betaine homocysteine methyl transferase (BHMT) and cystathione p-synthase. Both vitamin B12 and folate are required in the methylation of homocysteine to methionine via metheonine synthase after donation of a methyl group from SAM during the methylation process. Homocysteine is also methylated by betaine in a reaction catalysed by BHMT and does not involve vitamin B12 and folate. The other metabolic fate for homocysteine is the transsulfuration pathway which degrades homocysteine to cysteine and taurine, and is catalysed by cystathione p-synthase with vitamin Bg as coenzyme. [Pg.804]

Table 47.4 Estimation of remethylation and transsulfuration activities. The ratio of methionine to homocysteine (M/H) was significantly decreased in patients with CKD stage V, but elevated after each supplementation regimen supplementation. On the other hand, the ratio of cysteine to homocysteine (C/H) did not deteriorate and increased considerably after treatment whether accompanied by vitamin Bg or not. M/H represents remethylation activity and C/H represents transsulfuration activity. Reproduced with permission from Koyama (2011). Table 47.4 Estimation of remethylation and transsulfuration activities. The ratio of methionine to homocysteine (M/H) was significantly decreased in patients with CKD stage V, but elevated after each supplementation regimen supplementation. On the other hand, the ratio of cysteine to homocysteine (C/H) did not deteriorate and increased considerably after treatment whether accompanied by vitamin Bg or not. M/H represents remethylation activity and C/H represents transsulfuration activity. Reproduced with permission from Koyama (2011).
Homocysteine is formed as an intermediate metabolic product of methionine at the junction of two metabolic pathway remethylation and transsulfuration. [Pg.831]


See other pages where Transsulfuration methionine is mentioned: [Pg.675]    [Pg.1388]    [Pg.276]    [Pg.301]    [Pg.262]    [Pg.262]    [Pg.144]    [Pg.145]    [Pg.262]    [Pg.355]    [Pg.193]    [Pg.194]    [Pg.748]    [Pg.305]    [Pg.436]    [Pg.455]    [Pg.473]    [Pg.469]    [Pg.432]    [Pg.825]   
See also in sourсe #XX -- [ Pg.300 , Pg.301 ]




SEARCH



Methionine metabolism transsulfuration pathway

Serine methionine, transsulfuration

© 2024 chempedia.info