Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport paracellular route

The intent of this chapter is to establish a comprehensive framework in which the physicochemical properties of permeant molecules, hydrodynamic factors, and mass transport barrier properties of the transcellular and paracellular routes comprising the cell monolayer and the microporous filter support are quantitatively and mechanistically interrelated. We specifically define and quantify the biophysical properties of the paracellular route with the aid of selective hydrophilic permeants that vary in molecular size and charge (neutral, cationic, anionic, and zwitterionic). Further, the quantitative interrelationships of pH, pKa, partition... [Pg.235]

While both paracellular and passive transcellular pathways are available to a solute, the relative contribution of each to the observed transport will depend on the properties of the solute and the membrane in question. Generally, polar membrane-impermeant molecules diffuse through the paracellular route, which is dominated by tight junctions (Section III.A). Exceptions include molecules that are actively transported across one or both membrane domains of a polarized cell (Fig. 2). The tight junction provides a rate-limiting barrier for many ions, small molecules, and macromolecules depending on the shape, size, and charge of the solute and the selectivity and dimensions of the pathway. [Pg.238]

III. PARACELLULAR TRANSPORT KINETICS A. Morphology of the Paracellular Route... [Pg.255]

The plot of permeability coefficient versus molecular radius in Figure 10 shows the interdependence of molecular size and electric charge. The permeability of the solutes decreases with increasing size. The protonated amines permeate the pores faster than neutral solutes of comparable size, and the anions of weak acids permeate the pores at a slower rate. The transport behavior of the ionic permeants is consistent with a net negatively charged paracellular route. These results are phenomenologically identical to those found in the transport kinetics of... [Pg.265]

In Section III, emphasis was placed on flux kinetics across the cultured monolayer-filter support system where the passage of hydrophilic molecular species differing in molecular size and charge by the paracellular route was transmonolayer-controlled. In this situation, the mass transport barriers of the ABLs on the donor and receiver sides of the Transwell inserts were inconsequential, as evidenced by the lack of stirring effects on the flux kinetics. In this present section, the objective is to give quantitative insights into the permeability of the ABL as a function of hydrodynamic conditions imposed by stirring. The objective is accomplished with selected corticosteroid permeants which have been useful in rat intestinal absorption studies to demonstrate the interplay of membrane and ABL diffusional kinetics (Ho et al., 1977 Komiya et al., 1980). [Pg.280]

The perturbation of monolayers with agents (e.g., disodium ethylenediamine tetraacetate, Ca+2-free medium, sodium citrate, cytochalasin D) to open tight junctions and the effect on the transmonolayer flux of permeants are addressed in this section. It has been observed that permeants taking predominantly the trans-cellular route are not affected by perturbants of the paracellular route, compared to extracellular or relatively hydrophilic permeants (Artursson and Magnusson, 1990). Let us put these general observations into a quantitative intepretation in the light of the transmonolayer kinetic studies of steroids in this section and of paracellular permeants in Section III. There are three cases to consider (1) ABL-controlled permeants, (2) monolayer-controlled permeants transported principally by the transcellular route, and (3) monolayer-controlled permeants for which the paracellular route dominates. [Pg.293]

The permselectivity of the corneal and conjunctival paracellular routes was investigated by Huang et al. [159] in an attempt to show that nutrients can be extracted from the blood by the conjunctiva. Neither the blood vessels supplying the conjunctiva nor its basement membrane are rate-limiting to the transport of horseradish peroxidase. This 40 kDa tracer is restricted underneath the conjuncti-... [Pg.359]

Several of the postulated roles for nematode-secreted AChEs assume that they gain access to the intestinal mucosa. Several possibilities exist for transport of parasite AChE across the epithelial cell barrier, such as (i) utilization of existing pathways for receptor-mediated transcytosis (ii) a paracellular route facilitated by parasite-secreted proteases as observed for a bacterial elastase (Azghani et al., 1993) and (iii) increased paracellular permeability resulting from inflammatory events in the mucosa. We consider the latter suggestion most likely, as this has been duplicated by ex vivo perfusion with rat mast cell protease II (Scudamore et al., 1995). Moreover, cholinergic stimulation attenuates epithelial barrier properties to macromolecules in rat ileal crypts (Phillips et al., 1987). [Pg.229]

For the evaluation of a possible relationship between the molecular structure of a potential candidate and its transport abilities to cross the epithelial membrane of the gut, the mechanism or route of transport must be known [1,4]. This is due to the structural requirements for the transcellular route being different from the paracellular route. During the lead optimization phase - when many mechanistically based studies are performed - the cell culture-based models can also be used with great confidence. [Pg.111]

Fig. 15.2. Physicochemical molecular descriptors affect the transport route utilised across the intestinal epithelium. To passively diffuse through the membrane (1), the compound (here illustrated with testosterone) should preferably be small, with a molecular weight <500 Da, as well as uncharged and fairly lipophilic. However, compounds that are too lipophilic can stick to the membrane and will not pass through the cells. The paracellular route (2), here exemplified with mannitol, is mainly utilised by smaller (Mw < 200 Da)... Fig. 15.2. Physicochemical molecular descriptors affect the transport route utilised across the intestinal epithelium. To passively diffuse through the membrane (1), the compound (here illustrated with testosterone) should preferably be small, with a molecular weight <500 Da, as well as uncharged and fairly lipophilic. However, compounds that are too lipophilic can stick to the membrane and will not pass through the cells. The paracellular route (2), here exemplified with mannitol, is mainly utilised by smaller (Mw < 200 Da)...
In a second approach, Sugano et al. [138] tried to consider paracellular transport in addition to transcellular permeation. The prediction of the paracellular transport potential was based on size and charge parameters together with artificial membrane permeability in relation to known human absorption values. Other groups have focused on the paracellular route by modification of the assay [26],... [Pg.190]

An alternative method for assessing cell layer integrity is through the use of hydrophilic paracellular transport markers (e.g., radiolabeled D-mannitol or fluorescein-Na+), which passively traverse cells by the paracellular route. Small amounts of compound required for in vitro conjunctival cell culture transport experiments make this approach well suited for screening purposes. Relative absorption index of a series of pharmacologically active molecules can be ranked against known markers for the identification of candidates with potential absorption problems, which is a reliable tool to select drug candidates with optimal characteristics. [Pg.317]

Secretory epithelia control transport of water and solutes from the subluminal compartment (blood) into the lumen or body exterior. At present, there is no single unifying model for transepithelial fluid or water transport. In some epithelia, transcellular routes of fluid transport via water channels may predominate [88a], However, in other types of epithelia, such as the cervical-vaginal epithelia, transport of fluids usually occurs via the paracellular route [1, 14], In the latter, movement of fluid can be driven by three main mechanisms (Figure 15.1C) ... [Pg.344]

Another means of transport across the intestine is via the paracellular route, that is between the adjacent enterocytes. Water can enter the intestinal space throngh this ronte and take with it small molecnles inclnding glncose, amino acids and small peptides. This is known as solvent drag (Figure 4.7). Unfortunately, the qnantitative importance of this route is not known. [Pg.77]

The most efficient rectal absorption enhancers, which have been studied, include surfactants, bile acids, sodium salicylate (NaSA), medium-chain glycerides (MCG), NaCIO, enamine derivatives, EDTA, and others [45 17]. Transport from the rectal epithelium primarily involves two routes, i.e., the paracellular route and the transcellular route. The paracellular transport mechanism implies that drugs diffuse through a space between epithelial cells. On the other hand, an uptake mechanism which depends on lipophilicity involves a typical transcellular transport route, and active transport for amino acids, carrier-mediated transport for (3-lactam antibiotics and dipeptides, and endocytosis are also involved in the transcellular transport system, but these transporters are unlikely to express in rectum (Figure 8.7). Table 8.3 summarizes the typical absorption enhancers in rectal routes. [Pg.157]


See other pages where Transport paracellular route is mentioned: [Pg.536]    [Pg.537]    [Pg.221]    [Pg.249]    [Pg.258]    [Pg.262]    [Pg.290]    [Pg.302]    [Pg.342]    [Pg.358]    [Pg.366]    [Pg.375]    [Pg.81]    [Pg.98]    [Pg.166]    [Pg.61]    [Pg.222]    [Pg.341]    [Pg.357]    [Pg.420]    [Pg.424]    [Pg.426]    [Pg.162]    [Pg.173]    [Pg.45]    [Pg.117]    [Pg.325]    [Pg.37]    [Pg.76]    [Pg.97]    [Pg.163]    [Pg.195]    [Pg.204]    [Pg.259]    [Pg.151]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Paracellular

Paracellular transport

Transport route

Transportation routes

© 2024 chempedia.info