Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-metal derivatives reactions

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

Obviously, there are many good reasons to study ionic liquids as alternative solvents in transition metal-catalyzed reactions. Besides the engineering advantage of their nonvolatile natures, the investigation of new biphasic reactions with an ionic catalyst phase is of special interest. The possibility of adjusting solubility properties by different cation/anion combinations permits systematic optimization of the biphasic reaction (with regard, for example, to product selectivity). Attractive options to improve selectivity in multiphase reactions derive from the preferential solubility of only one reactant in the catalyst solvent or from the in situ extraction of reaction intermediates from the catalyst layer. Moreover, the application of an ionic liquid catalyst layer permits a biphasic reaction mode in many cases where this would not be possible with water or polar organic solvents (due to incompatibility with the catalyst or problems with substrate solubility, for example). [Pg.252]

The last method for the preparation of 2-quinolones described in this chapter relies on a intramolecular Heck cyclization starting from heteroaryl-amides (Table 2) [57]. These are synthesized either from commercially available pyrrole- and thiophene-2-carboxylic acids (a, Table 2) or thiophene-and furan-3-carboxylic acids (b, Table 2) in three steps. The Heck cyclization is conventionally performed with W,Ar-dimethylacetamide (DMA) as solvent, KOAc as base and Pd(PPh3)4 as catalyst for 24 h at 120 °C resulting in the coupled products in 56-89% yields. As discussed in Sect. 3.4, transition metal-catalyzed reactions often benefit from microwave irradiation [58-61], and so is the case also for this intramolecular reaction. In fact, derivatives with an aryl iodide were successfully coupled by conventional methods, whereas the heteroarylbromides 18 and 19, shown in Table 2, could only be coupled in satisfying yields by using MAOS (Table 2). [Pg.320]

Chiral amines and diamines are readily available substrates for the synthesis of ligands for transition metal-catalysed reactions since they can easily be transformed into chiral ureas and thioureas. Therefore, several groups have prepared chiral symmetrical ureas and thioureas, dissymmetrical ureas and thioureas, amino-urea and thiourea derivatives. Finally polyureas and non-soluble polythioureas were also prepared and tested as ligands for asymmetric catalysis. [Pg.233]

Thus, the direct alkylation of the anions derived from nitroalkanes with alkyl halides has some difficulties, and such difficulties are partially overcome by the radical reaction or transition metal catalyzed reactions, as discussed in Sections 5.4 and 5.5. [Pg.128]

Albeit the transition metal catalysed reactions of methylenecyclopropane derivatives have already been thoroughly reviewed [2], it should be noted here that the cyclodimerization of these compounds can also be achieved by catalysis with Ni or Co complexes. The regioselectivity of the process is surprising and opposed to that of the thermal reaction, giving dispiro[2.1.2.1]octane derivatives (Scheme 69) [2],... [Pg.76]

Transition metal-catalyzed reactions of ct-diazocarbonyl compounds proceed via electrophilic Fischer-type carbene complexes. Consequently, when cr-diazoketone 341 was treated, at room temperature, with catalytic amounts of [ RhiOAcbh, it gave the formation of a single NH insertion product, which was assigned to the enol stmcture 342. At room temperature, in both solid state and in solution, 342 tautomerizes to give the expected 1-oxoperhydropyr-rolo[l,2-c]oxazole derivative 343 (Scheme 50) <1997TA2001>. [Pg.89]

As discussed in Section 3.1.6, cyclopropenes can react with rhodium complexes [38,585,587-589,1061,1063] or other transition metal derivatives to yield vinylcarbene complexes (see Section 3.1.6). This reaction will proceed particularly smoothly with strained cyclopropenes, because these can already isomerize thermally to vinylcarbenes [1064]. Hence the formation of vinylcarbene complexes from alkynes can proceed by initial cyclopropanation, followed by reaction of the resulting cyclopropene with the complex L,M. [Pg.176]

Acceptor-substituted carbene complexes are highly reactive intermediates, capable of transforming organic compounds in many different ways. Typical reactions include insertion into o-bonds, cyclopropanation, and ylide formation. Generally, acceptor-substituted carbene complexes are not isolated and used in stoichiometric amounts, but generated in situ from a carbene precursor and transition metal derivative. Usually only catalytic quantities of a transition metal complex are required for complete conversion of a carbene precursor via an intermediate carbene complex into the final product. [Pg.178]

Modified cobalt complexes of the type frans-Co2(CO)6(phosphine)2 are promising candidates for certain transition metal-catalyzed reactions, in particular for the hydroformylation of long-chained olefins [117]. A series of complexes Co2(CO)6[P(alkyl) (aryl)m]2 (n 0,1,2,3 m S - n) was synthesized and used for solubility measurements. Since the basicity of phosphines affects the catalytic activity, use of fluorous substituents might induce unexpected changes in the activity. Therefore, also derivatives with an additional ethyl spacer between the fluorous group and the phosphine moiety were examined (Sect. 3.1). [Pg.121]

Transition metal anions have widely been used in the synthesis of the first row transition metal derivatives of group IV metals however only in one case does the reaction take place with chlorosilanes... [Pg.80]

The first transition metal derivatives of a Zintl ion was prepared by Teixidor et al. in 1983 in reactions between Pt(PPli4)4 and en solutions of the Eg (E = Sn, Pb) [25, 26]. Despite being the first examples in this important class of clusters, the complexes have yet to be isolated and their structures and compositions remain unknown. The authors propose that complexes have a (PPh3)2PtSng stoichiometry and a nido-ty structure. Based on comparisons with NMR parameters from the past 30 years and the stoichiometry of the reactions described by Teixidor et al., we believe that the Rudolph compounds are most likely 22-electron cZos )-Pf E9Pt (PPh3) complexes. Our rationale is given below. [Pg.73]

There is evidence in the literature that many of these transition metal derivatives, when chemically bonded or grafted onto an inorganic oxide surface, possess catalytic activity for olefin reactions far greater than that observed when the organometallic compound is used in a homogeneous manner (26). In some examples, catalytic activity was promoted when the original compound had none (3, 27). [Pg.223]


See other pages where Transition-metal derivatives reactions is mentioned: [Pg.303]    [Pg.303]    [Pg.13]    [Pg.209]    [Pg.233]    [Pg.1063]    [Pg.18]    [Pg.187]    [Pg.128]    [Pg.312]    [Pg.720]    [Pg.110]    [Pg.390]    [Pg.280]    [Pg.49]    [Pg.144]    [Pg.303]    [Pg.747]    [Pg.44]    [Pg.1088]    [Pg.93]    [Pg.540]    [Pg.76]    [Pg.525]    [Pg.1088]    [Pg.149]    [Pg.150]    [Pg.186]    [Pg.520]    [Pg.223]   


SEARCH



Metallic derivates

Transition metal reactions

Transition-metal derivatives

Transition-metal derivatives catalytic reactions involving

Transition-metal derivatives insertion reactions

Transition-metal derivatives nucleophilic cleavage reactions

© 2024 chempedia.info