Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer carbon dioxide

Biotin functions to transfer carbon dioxide in a small number of carboxylation reactions. A holocarboxylase synthetase acts on a lysine residue of the apoenzymes of acetyl-CoA carboxylase, pymvate carboxylase, propi-onyl-CoA carboxylase, or methylcrotonyl-CoA carboxylase to react with free biotin to form the biocytin residue of the holoenzyme. The reactive intermediate is 1-7V-carboxybiocytin, formed from bicarbonate in an ATP-dependent reaction. The carboxyl group is then transferred to the substrate for carboxylation (Figure 21—1). [Pg.494]

Iwatani et al. carried out a kinetic investigation of the carboxylation of cyclohexanone with carbon dioxide in dimethyl sulfoxide in the presence of DBU (78MI4). The effects of the initial concentration of DBU and cyclohexanone, the pressure of carbon dioxide, and the temperature on the carboxylation were studied. The kinetic data suggested that the carboxylation involved the initial formation of a complex of DBU and carbon dioxide, which transferred carbon dioxide to the substrate in the rate-determining step. [Pg.119]

Activated carbon dioxide. Copper(I) cyanoacetate transfers carbon dioxide... [Pg.41]

Knoll, A., Maier, B., Tscherrig, H., Biichs, The Oxygen Mass Transfer, Carbon Dioxide Inhibition, Heat Removal, and the Energy and Cost Efficiencies of High Pressure Fermentation. Vol. 92, p. 77... [Pg.304]

As a first step in imderstanding the analysis of energy transfer experiments, it is wortliwhile to summarize tire steps in a typical experiment where CgFg is tire hot donor and carbon dioxide is tire bath receptor molecule. First, excited... [Pg.3003]

Figure C3.3.11. The energy transfer probability distribution function P(E, E ) (see figure C3.3.2) for two molecules, pyrazine and hexafluorobenzene, excited at 248 nm, arising from collisions with carbon dioxide... Figure C3.3.11. The energy transfer probability distribution function P(E, E ) (see figure C3.3.2) for two molecules, pyrazine and hexafluorobenzene, excited at 248 nm, arising from collisions with carbon dioxide...
Figure C3.3.12. The energy-transfer-probability-distribution function P(E, E ) (see figure C3.3.2 and figure C3.3.11) for two molecules, pyrazine and hexafluorobenzene, excited at 248 nm, arising from collisions with carbon dioxide molecules. Both collisions that leave the carbon dioxide bath molecule in its ground vibrationless state, OO O, and those that excite the 00 1 vibrational state (2349 cm ), have been included in computing this probability. The spikes in the distribution arise from excitation of the carbon dioxide bath 00 1 vibrational mode. Figure C3.3.12. The energy-transfer-probability-distribution function P(E, E ) (see figure C3.3.2 and figure C3.3.11) for two molecules, pyrazine and hexafluorobenzene, excited at 248 nm, arising from collisions with carbon dioxide molecules. Both collisions that leave the carbon dioxide bath molecule in its ground vibrationless state, OO O, and those that excite the 00 1 vibrational state (2349 cm ), have been included in computing this probability. The spikes in the distribution arise from excitation of the carbon dioxide bath 00 1 vibrational mode.
Sharma R D and Brau C A 1967 Near-resonant vibrational energy transfer in nitrogen carbon dioxide mixtures Phys. Rev. Lett. 19 1273-5... [Pg.3015]

Yardley J T and Moore C B 1967 Intramolecular vibration-to-vibration energy transfer in carbon dioxide J. Chem. Phys. 46 4491-5... [Pg.3015]

Carbon dioxide is used in the manufacture of sodium carbonate by the ammonia-soda process, urea, salicyclic acid (for aspirin), fire extinguishers and aerated water. Lesser amounts are used to transfer heat generated by an atomic reactor to water and so produce steam and electric power, whilst solid carbon dioxide is used as a refrigerant, a mixture of solid carbon dioxide and alcohol providing a good low-temperature bath (195 K) in which reactions can be carried out in the laboratory. [Pg.182]

Glycol gives the non-volatile oxalic acid. After heating the mixture under reflux for 10 minutes, transfer 2 ml. of the cold product to a test-tube and add 4 ml. of cone. H2SO4. Note the production of carbon monoxide and carbon dioxide on heating (p. 350). [Pg.335]

I he methyl iodide is transferred quantitatively (by means of a stream of a carrier gas such as carbon dioxide) to an absorption vessel where it either reacts with alcoholic silver nitrate solution and is finally estimated gravimetrically as Agl, or it is absorbed in an acetic acid solution containing bromine. In the latter case, iodine monobromide is first formed, further oxidation yielding iodic acid, which on subsequent treatment with acid KI solution liberates iodine which is finally estimated with thiosulphate (c/. p. 501). The advantage of this latter method is that six times the original quantity of iodine is finally liberated. [Pg.497]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

Sodium salt of eosin. Grind together in a mortar 12 g. of eosin with 2 g. of anhydrous sodium carbonate. Transfer the mixture to a 250 ml. conical flask, moisten it with 10 ml. of rectified spirit, add 10 ml. of water and warm on a water bath, with stirring, until the evolution of carbon dioxide ceases. Add 50 ml. of ethyl alcohol, heat to boiling, and filter the hot solution through a fluted filter paper (supported in a short-stemmed funnel) into a beaker, and allow to stand overnight. Filter ofiF the browiiish-red crystals of sodium eosin, wash with a little alcohol, and dry. The yield is 10 g. [Pg.986]

These equations tell us that the reverse process proton transfer from acids to bicarbon ate to form carbon dioxide will be favorable when of the acid exceeds 4 3 X 10 (pK, < 6 4) Among compounds containing carbon hydrogen and oxygen only car boxylic acids are acidic enough to meet this requirement They dissolve m aqueous sodium bicarbonate with the evolution of carbon dioxide This behavior is the basis of a qualitative test for carboxylic acids... [Pg.805]

The ready reversibility of this reaction is essential to the role that qumones play in cellular respiration the process by which an organism uses molecular oxygen to convert Its food to carbon dioxide water and energy Electrons are not transferred directly from the substrate molecule to oxygen but instead are transferred by way of an electron trans port chain involving a succession of oxidation-reduction reactions A key component of this electron transport chain is the substance known as ubiquinone or coenzyme Q... [Pg.1013]

Step 1 An acetyl group is transferred to the a carbon atom of the malonyl group with evolution of carbon dioxide Presumably decarboxylation gives an enol which attacks the acetyl group... [Pg.1076]

This reaction has been carried out with a carbon dioxide laser line tuned to the wavelength of 10.61 p.m, which corresponds to the spacing of the lowest few states of the SF ladder. The laser is a high power TEA laser with pulse duration around 100 ns, so that there is no time for energy transfer by coUisions. This example shows the potential for breakup of individual molecules by a tuned laser. As with other laser chemistry, there is interest in driving the dissociation reaction in selected directions, to produce breakup in specific controllable reaction channels. [Pg.19]

Subsequent studies (63,64) suggested that the nature of the chemical activation process was a one-electron oxidation of the fluorescer by (27) followed by decomposition of the dioxetanedione radical anion to a carbon dioxide radical anion. Back electron transfer to the radical cation of the fluorescer produced the excited state which emitted the luminescence characteristic of the fluorescent state of the emitter. The chemical activation mechanism was patterned after the CIEEL mechanism proposed for dioxetanones and dioxetanes discussed earher (65). Additional support for the CIEEL mechanism, was furnished by demonstration (66) that a linear correlation existed between the singlet excitation energy of the fluorescer and the chemiluminescence intensity which had been shown earher with dimethyl dioxetanone (67). [Pg.266]


See other pages where Transfer carbon dioxide is mentioned: [Pg.312]    [Pg.232]    [Pg.312]    [Pg.232]    [Pg.3015]    [Pg.632]    [Pg.76]    [Pg.97]    [Pg.132]    [Pg.158]    [Pg.273]    [Pg.481]    [Pg.482]    [Pg.483]    [Pg.482]    [Pg.485]    [Pg.487]    [Pg.567]    [Pg.735]    [Pg.765]    [Pg.775]    [Pg.222]    [Pg.460]    [Pg.22]    [Pg.22]    [Pg.28]    [Pg.29]    [Pg.396]    [Pg.505]    [Pg.16]    [Pg.6]    [Pg.322]    [Pg.344]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Carbon transfer

© 2024 chempedia.info