Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence states

Subsequent studies (63,64) suggested that the nature of the chemical activation process was a one-electron oxidation of the fluorescer by (27) followed by decomposition of the dioxetanedione radical anion to a carbon dioxide radical anion. Back electron transfer to the radical cation of the fluorescer produced the excited state which emitted the luminescence characteristic of the fluorescent state of the emitter. The chemical activation mechanism was patterned after the CIEEL mechanism proposed for dioxetanones and dioxetanes discussed earher (65). Additional support for the CIEEL mechanism, was furnished by demonstration (66) that a linear correlation existed between the singlet excitation energy of the fluorescer and the chemiluminescence intensity which had been shown earher with dimethyl dioxetanone (67). [Pg.266]

We will first consider possible assignments for the fluorescing states in laser-excited PuF6(g) based on available energy level structure and thermodynamic information. We will then consider some of the implications of the long-lived PuF6 fluorescence we have observed in terms of potential photochemical separation processes. [Pg.167]

Research Opportunities. The presence of a long-lived fluorescing state following either 532 nm or 1064 nm excitation of PuF6(g) provides a valuable opportunity to study the extent to which electronic energy in a 5f electron state is available in photochemical and energy transfer reactions. Such gas phase bimolecular reactions would occur in a weak interaction limit governed by van der Waals forces. Seen from the perspective of potential photochemical separations in fluoride volatility... [Pg.171]

Though we and others (27-29) have demonstrated the utility and the improved sensitivity of the peroxyoxalate chemiluminescence method for analyte detection in RP-HPLC separations for appropriate substrates, a substantial area for Improvement and refinement of the technique remains. We have shown that the reactions of hydrogen peroxide and oxalate esters yield a very complex array of reactive intermediates, some of which activate the fluorophor to its fluorescent state. The mechanism for the ester reaction as well as the process for conversion of the chemical potential energy into electronic (excited state) energy remain to be detailed. Finally, the refinement of the technique for routine application of this sensitive method, including the optimization of the effi-ciencies for each of the contributing factors, is currently a major effort in the Center for Bioanalytical Research. [Pg.153]

The simplest fluorescence measurement is that of intensity of emission, and most on-line detectors are restricted to this capability. Fluorescence, however, has been used to measure a number of molecular properties. Shifts in the fluorescence spectrum may indicate changes in the hydrophobicity of the fluorophore environment. The lifetime of a fluorescent state is often related to the mobility of the fluorophore. If a polarized light source is used, the emitted light may retain some degree of polarization. If the molecular rotation is far faster than the lifetime of the excited state, all polarization will be lost. If rotation is slow, however, some polarization may be retained. The polarization can be related to the rate of macromolecular tumbling, which, in turn, is related to the molecular size. Time-resolved and polarized fluorescence detectors require special excitation systems and highly sensitive detection systems and have not been commonly adapted for on-line use. [Pg.21]

Martin ME, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 126 5452... [Pg.328]

Generally in solution at room temperature only fluorescence emission is observed. To obtain phosphorescence spectra, low temperatures are used and a rotating can with a narrow slit in the side is placed around the sample. Since the lifetime of the fluorescent state is generally much shorter than that of the phosphorescent state, the time required for the slit in the can to rotate 90° ensures that only the longer lived phosphorescence will be observed. [Pg.22]

Figure 2.30. SFo, Franck-Condon state Sp, fluorescence state. Reproduced with permission from Ref. 65. Figure 2.30. SFo, Franck-Condon state Sp, fluorescence state. Reproduced with permission from Ref. 65.
When only unimolecular (first order) processes serve to deactivate the fluorescent state (e.g., at very low concentrations) the quantum yield becomes... [Pg.322]

Once the fluorescence quantum yield has been determined, all that is required to calculate the fluorescence rate constant kf is the fluorescence lifetime rf. Direct measurement of this quantity, like the measurement of the fluorescence quantum yield, is difficult, in this case because of the short lifetime of the fluorescent state (shorter than the normal flash from a flash lamp ). There are, however, several methods which have been developed to determine fluorescence lifetimes and these will be the subject of this section. [Pg.323]

FRET to fluorescent acceptor is obviously more popular because of its two-channel self-calibrating nature. Sensing may result in switching between two fluorescent states, so that in one of them a predominant emission of the donor can be observed and in the other - of the acceptor. This type of FRET can be extended to time domain with the benefit of using simple instrumentation with the longlifetime donors [27]. [Pg.15]

Miller JN (2008) Long-wavelength and near-infrared fluorescence state of the art, future applications, and standards. Springer Ser Fluoresc 5 147-162... [Pg.99]

Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96 6177-6182... [Pg.376]

At wavelengths shorter than 1520 A photolysis of N20 is accompanied by fluorescence152 from the B2IIr state of NO (fi emission). Added or product NO quenches this P emission and enhances fluorescence of the y bands from NO(<42 +). The fluorescent states of NO must152 arise in secondary reactions and these are believed151,152 to be, for P emission,... [Pg.73]

However, the heavy atom effect can be small for some aromatic hydrocarbons if (i) the fluorescence quantum yield is large so that de-excitation by fluorescence emission dominates all other de-excitation processes (ii) the fluorescence quantum yield is very low so that the increase in efficiency of intersystem crossing is relatively small (iii) there is no triplet state energetically close to the fluorescing state (e.g. perylene)10 . [Pg.56]

At present it is universally acknowledged that TTA as triplet-triplet energy transfer is caused by exchange interaction of electrons in bimolecular complexes which takes place during molecular diffusion encounters in solution (in gas phase -molecular collisions are examined in crystals - triplet exciton diffusion is the responsible annihilation process (8-10)). No doubt, interaction of molecular partners in a diffusion complex may lead to the change of probabilities of fluorescent state radiative and nonradiative deactivation. Nevertheless, it is normally considered that as a result of TTA the energy of two triplet partners is accumulated in one molecule which emits the ADF (11). Interaction with the second deactivated partner is not taken into account, i.e. it is assumed that the ADF is of monomer nature and its spectrum coincides with the PF spectrum. Apparently the latter may be true when the ADF takes place from Si state the lifetime of which ( Tst 10-8 - 10-9 s) is much longer than the lifetime of diffusion encounter complex ( 10-10 - lO-H s in liquid solutions). As a matter of fact we have not observed considerable ADF and PF spectral difference when Sj metal lo-... [Pg.120]

TTF-based D-A systems have been extensively used in recent years to play around photoinduced electron transfer processes. Typically, when an electron acceptor moiety that emits fluorescence intrinsically is linked to TTF (D), the fluorescence due to the A moiety may be quenched because of a photoinduced electron transfer process (Scheme 15.1). Accordingly, these molecular systems are potentially interesting for photovoltaic studies. For instance, efficient photoinduced electron transfer and charge separation were reported for TTF-fullerene dyads.6,7 An important added value provided by TTF relies on the redox behavior of this unit that can be reversibly oxidized according to two successive redox steps. Therefore, such TTF-A assemblies allow an efficient entry to redox fluorescence switches, for which the fluorescent state of the fluorophore A can be reversibly switched on upon oxidation of the TTF unit. [Pg.449]

The photodynamics of electronically excited indole in water is investigated by UV-visible pump-probe spectroscopy with 80 fs time resolution and compared to the behavior in other solvents. In cyclohexane population transfer from the optically excited La to the Lb state happens within 7 ps. In ethanol ultrafast state reversal is observed, followed by population transfer from the Lb to the La state within 6 ps. In water ultrafast branching occurs between the fluorescing state and the charge-transfer-to-solvent state. Presolvated electrons, formed together with indole radicals within our time resolution, solvate on a timescale of 350 fs. [Pg.229]

From the steady state fluorescence spectrum of indole in water a fluorescence quantum yield of about 0.09 is determined. Since the cation appears in less than 80 fs a branching of the excited state population has to occur immediately after photo excitation. We propose the model shown in Fig. 3a). A fraction of 45 % experiences photoionization, whereas the rest of the population relaxes to a fluorescing state, which can not ionize any more. A charge transfer to solvent state (CITS), that was also introduced by other authors [4,7], is created within 80 fs. The presolvated electrons, also known as wet or hot electrons, form solvated electrons with a time constant of 350 fs. Afterwards the solvated electrons show no recombination within the next 160 ps contrary to solvated electrons in pure water as is shown in Fig. 3b). [Pg.232]

The population transfer between the excited La and Lb states of 6.5 2 ps is determined from indole dissolved in ethanol and cyclohexane. In water the appearance of presolvated elections within the time resolution of our experiment and the fluorescence quantum yield of 0.09 indicate an ultrafast branching between the fluorescing state and the CTTS state immediately after photoexcitation. The solvation of the generated electrons shows the same initial dynamics of 350 fs for solvated indole and for pure water but differs on longer timescales. [Pg.232]

Abstract Ultrafast photoreactions in PNS of PYP have been studied by means of fs fluorescence up conversion method. Conclusions obtained are (a) Photoreaction in PNS (chromophore twisting) occurs from vibrationally unrelaxed fluorescence state and coherent oscillations in the fluorescence decay curves have been observed for the first time, (b) Comparative studies on fluorescence dynamics of mutants and w.-t. PYP have proved that the w.-t. PYP is best engineered for the ultrafast reaction, (c) The coherent oscillations in the fluorescence decay completely disappeared and the reaction was much slower in the denatured state, demonstrating the supremely important role of PNS for the photoreaction. [Pg.409]


See other pages where Fluorescence states is mentioned: [Pg.2492]    [Pg.2496]    [Pg.163]    [Pg.127]    [Pg.137]    [Pg.35]    [Pg.41]    [Pg.112]    [Pg.112]    [Pg.322]    [Pg.209]    [Pg.312]    [Pg.315]    [Pg.190]    [Pg.299]    [Pg.15]    [Pg.42]    [Pg.79]    [Pg.333]    [Pg.571]    [Pg.300]    [Pg.235]    [Pg.369]    [Pg.25]    [Pg.890]    [Pg.893]    [Pg.225]    [Pg.494]   
See also in sourсe #XX -- [ Pg.253 ]

See also in sourсe #XX -- [ Pg.253 ]




SEARCH



© 2024 chempedia.info