Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium tetrachloride, oxidation

In this process, catalysts, such as boric acid, molybdenum oxide, zirconium, and titanium tetrachloride or ammonium molybdate, are used to accelerate the reaction. The synthesis is either carried out in a solvent (aUphatic hydrocarbon, trichlorobenzene, quinoline, pyridine, glycols, or alcohols) at approximately 200°C or without a solvent at 300°C (51,52). [Pg.505]

Impurities that form volatile chlorides leave as gases at the top of the furnace together with the TiCl. By cooling those gases, most impurities, with the exception of vanadium and siUcon chlorides can be separated from the titanium tetrachloride [7550-45-0]. Vanadium chlorides can be reduced to lower oxidation state chlorides that are soHds highly volatile SiCl can be removed from TiCl by fractional distillation. [Pg.9]

Both the Toth and Alcoa processes provide aluminum chloride for subsequent reduction to aluminum. Pilot-plant tests of these processes have shown difficulties exist in producing aluminum chloride of the purity needed. In the Toth process for the production of aluminum chloride, kaolin [1332-58-7] clay is used as the source of alumina (5). The clay is mixed with sulfur and carbon, and the mixture is ground together, pelletized, and calcined at 700°C. The calcined mixture is chlorinated at 800°C and gaseous aluminum chloride is evolved. The clay used contains considerable amounts of silica, titania, and iron oxides, which chlorinate and must be separated. Silicon tetrachloride and titanium tetrachloride are separated by distillation. Resublimation of aluminum chloride is requited to reduce contamination from iron chloride. [Pg.147]

The volatile chlorides ate collected and the unreactedsohds and nonvolatile chlorides ate discarded. Titanium tetrachloride is separated from the other chlorides by double distillation (12). Vanadium oxychloride, VOCl, which has a boiling point close to TiCl, is separated by complexing with mineral oil, reducing with H2S to VOCI2, or complexing with copper. The TiCl is finally oxidized at 985°C to Ti02 and the chlorine gas is recycled (8,11) (see also... [Pg.97]

A high purity titanium dioxide of poorly defined crystal form (ca 80% anatase, 20% mtile) is made commercially by flame hydrolysis of titanium tetrachloride. This product is used extensively for academic photocatalytic studies (70). The gas-phase oxidation of titanium tetrachloride, the basis of the chloride process for the production of titanium dioxide pigments, can be used for the production of high purity titanium dioxide, but, as with flame hydrolysis, the product is of poorly defined crystalline form unless special dopants are added to the principal reactants (71). [Pg.121]

Two pigment production routes ate in commercial use. In the sulfate process, the ore is dissolved in sulfuric acid, the solution is hydrolyzed to precipitate a microcrystalline titanium dioxide, which in turn is grown by a process of calcination at temperatures of ca 900—1000°C. In the chloride process, titanium tetrachloride, formed by chlorinating the ore, is purified by distillation and is then oxidized at ca 1400—1600°C to form crystals of the required size. In both cases, the taw products are finished by coating with a layer of hydrous oxides, typically a mixture of siUca, alumina, etc. [Pg.122]

Titanium oxide dichloride [13780-39-8] TiOCl2, is a yellow hygroscopic soHd that may be prepared by bubbling ozone or chlorine monoxide through titanium tetrachloride. It is insoluble in nonpolar solvents but forms a large number of adducts with oxygen donors, eg, ether. It decomposes to titanium tetrachloride and titanium dioxide at temperatures of ca 180°C (136). [Pg.131]

High Density Polyethylene. High density polyethylene (HDPE), 0.94—0.97 g/cm, is a thermoplastic prepared commercially by two catalytic methods. In one, coordination catalysts are prepared from an aluminum alkyl and titanium tetrachloride in heptane. The other method uses metal oxide catalysts supported on a carrier (see Catalysis). [Pg.327]

Many other reactions of ethylene oxide are only of laboratory significance. These iaclude nucleophilic additions of amides, alkaU metal organic compounds, and pyridinyl alcohols (93), and electrophilic reactions with orthoformates, acetals, titanium tetrachloride, sulfenyl chlorides, halo-silanes, and dinitrogen tetroxide (94). [Pg.454]

Chloride process. This process requires a high titanium feedstock. Rutile is reacted with hydrochloric acid to produce titanium tetrachloride, which can be hydrolyzed with steam or oxidized with air to render the dioxide. A rutile form of titanium dioxide is obtained. [Pg.635]

The ease of oxidation of magnesium is important in the commercial manufacture of titanium metal. Titanium, when quite pure, shows great promise as a structural metal, but the economics of production have thus far inhibited its use. One of the processes currently used, the Kroll process, involves the reduction of liquid titanium tetrachloride with molten metallic magnesium ... [Pg.368]

The formation of carbon monoxide aids chlorination in exactly the same way as does the formation of carbon dioxide which of the two oxides of carbon would found in the reaction depends on the temperature at which reduction-chlorination is carried out. Below 600 °C carbon dioxide forms while above 700 °C carbon monoxide is formed. This changeover results from the variation in the free energies of formation of these two oxides with temperature. For example, at 900 °C the situation as regards the formation of titanium tetrachloride from titanium dioxide is guided by the reactions ... [Pg.402]

Titanium tetrachloride is produced on an industrial scale by the chlorination of titanium dioxide-carbon mixtures in reactors lined with silica. During the reactor operation, the lining comes into contact not only with chlorine but also with titanium tetrachloride. There appears to be no attack on silica by either of these as the lining remains intact. However, the use of such a reactor for chlorinating beryllium oxide by the carbon-chlorine reduction chlorination procedure is not possible because the silica lining is attacked in this case. This corrosion of silica can be traced to the attack of beryllium chloride on silica. The interaction of beryllium chloride with silica results in the formation of silicon tetrachloride in accordance with the reaction... [Pg.404]

It follows that titanium tetrachloride can not chlorinate silica because at all temperatures the free energy change for that reaction has a large positive value. In general, in the interaction between the oxide (MO) of one metal (M) and the chloride (M C12) of a different metal (M ) ... [Pg.404]

More traditional carbon nucleophiles can also be used for an alkylative ring-opening strategy, as exemplified by the titanium tetrachloride promoted reaction of trimethylsilyl enol ethers (82) with ethylene oxide, a protocol which provides aldol products (84) in moderate to good yields <00TL763>. While typical lithium enolates of esters and ketones do not react directly with epoxides, aluminum ester enolates (e.g., 86) can be used quite effectively. This methodology is the subject of a recent review <00T1149>. [Pg.61]

The use of aqueous foams to control fume or vapour release from reactive chemicals is discussed. An acid-resistant foam NF2 controlled fume emission from 35% and 65% oleum, and from titanium tetrachloride, but was not effective for sulfur trioxide and chlorosulfuric acid. An alcohol-resistant foam NF1 suppressed ammonia vapour emission by 80%, and Universal fire foam reduced evaporation of ethylene oxide, vinyl chloride and methanethiol, and reduced vapour emission of 1,3-butadiene by 60%. Safety aspects of foam blanketing are discussed [1]. Equipment and application techniques are covered in some detail [2],... [Pg.160]

Another useful route to alkaloids involves the electrochemical oxidation of lactams (145) bearing functionality on nitrogen that can be used to intramolec-ularly capture an intermediate acyl im-minium ion (146). The concept is portrayed in Scheme 33 and is highlighted by the synthesis of alkaloids lupinine (150) and epilupinine (151) shown in Scheme 34 [60]. Thus, the electrooxidation of lactam (147) provided a 71% yield of ether (148). Subsequent treatment with titanium tetrachloride affected cyclization and afforded the [4.4.0] bicyclic adduct (149). Krapcho decarbomethoxylation followed by hydride reduction of both the... [Pg.335]

Presently there are two main processes for manufacturing this important white pigment. The main one involves reaction of rutile ore (about 95% Ti02) with chlorine to give titanium tetrachloride. For this reason we have chosen to group this key chemical under chlorine and sodium chloride. The titanium tetrachloride is a liquid and can be purified by distillation, bp 136°C. It is then oxidized to pure titanium dioxide and the chlorine is regenerated. Approximately 94% of all titanium dioxide is made by this process. [Pg.86]


See other pages where Titanium tetrachloride, oxidation is mentioned: [Pg.504]    [Pg.115]    [Pg.387]    [Pg.522]    [Pg.94]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.131]    [Pg.524]    [Pg.913]    [Pg.105]    [Pg.409]    [Pg.111]    [Pg.417]    [Pg.1469]    [Pg.409]    [Pg.698]    [Pg.152]    [Pg.163]    [Pg.132]    [Pg.295]    [Pg.876]    [Pg.337]    [Pg.272]    [Pg.272]    [Pg.262]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Oxides titanium oxide

Titanium oxidized

Titanium tetrachlorid

Titanium tetrachloride

© 2024 chempedia.info