Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tin chloride solution

The cymidiu sulphouic acid is then diazotised in the usual manner by treating with sodium nitrite in acid solution and the diazo body reduced with alkaline tin chloride solution, or with formic acid and powdered copper, or with other relatively gentle reducing agents. The 3 or 5 cymidin sulphonic acid gives by the above process one and the same cymene sulphonic acid, viz., l-methyl-3-sulphonic-4-isopropyl benzene. [Pg.255]

Virgin ACFs, AW2001, supplied by Taiwan Carbon Co. was used in this work. To sensitize the surface of ACFs were immersed in a solution composed of acidified tin chloride solution at concentration of S g-f for 5 min at room temperature, and followed by a rinse with distilled water. The ACFs were successively subjected to a copper electroplating in copper plating solutions with varying treatment time. [Pg.490]

Suppose the indexer is directing the searcher to a new, precise determination of "Stannous chloride solutions, density. He makes that entry and moves on to the next item. The gremlins win if the searcher gives up when he finds nothing under "Tin chloride solutions, density. ... [Pg.16]

A cousin to this reduction is one using stannous chloride (a.k.a. SnCb, a.k.a. Tin chloride) which is done exactly as the calcium one except that about lOOg of SnCb is used in place of the Mg or Ca and the addition occurs at room temperature and the solution is stirred for one hour rather than 15 minutes. Some very good reductions that operate almost exclusively at room temperature with no pressure and give almost 100% yields are to follow. The only reason Strike did not detail these methods is that some of the chemicals involved are a little less common than Strike is used to but all are available to the public. These alternatives include acetlylacetone and triethylamine [73], propanedithlol and trieth-ylamine [74], triphenylphosphine [75], NaBH4 with phase transfer catalyst [76], H2S and pyridine [77], and palladium hydrox-ide/carbon with hydrazine [78], stannous chloride dihydrate [85]. [Pg.155]

In the field, cassiterite ore is usually recognized by its high density (7.04 g/cm ), low solubiUty in acid and alkaline solutions, and extreme hardness. Tin in solution is detected by the white precipitate formed with mercuric chloride. Stannous tin in solution gives a red precipitate with toluene-3,4-dithiol. [Pg.60]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

Solutions of anhydrous stannous chloride are strongly reducing and thus are widely used as reducing agents. Dilute aqueous solutions tend to hydrolyze and oxidize in air, but addition of dilute hydrochloric acid prevents this hydrolysis concentrated solutions resist both hydrolysis and oxidation. Neutralization of tin(II) chloride solutions with caustic causes the precipitation of stannous oxide or its metastable hydrate. Excess addition of caustic causes the formation of stannites. Numerous complex salts of stannous chloride, known as chlorostannites, have been reported (3). They are generally prepared by the evaporation of a solution containing the complexing salts. [Pg.64]

Stannous Chloride Dihydrate. A white crystalline soHd, stannous chloride dihydrate is prepared either by treatment of granulated tin with hydrochloric acid followed by evaporation and crystallisation or by reduction of a stannic chloride solution with a cathode or tin metal followed by crystallisation. It is soluble in methanol, ethyl acetate, glacial acetic acid, sodium hydroxide solution, and dilute or concentrated hydrochloric acid. It is soluble in less than its own weight of water, but with much water it forms an insoluble basic salt. [Pg.65]

Stannous Oxide Hydrate. Stannous oxide hydrate [12026-24-3] SnO H2O (sometimes erroneously called stannous hydroxide or stannous acid), mol wt 152.7, is obtained as a white amorphous crystalline product on treatment of stannous chloride solutions with alkaH. It dissolves in alkaH solutions, forming stannites. The stannite solutions, which decompose readily to alkaH-metal stannates and tin, have been used industrially for immersion tinning. [Pg.65]

Boil the tartaric acid and caustic soda solution for three hours in a round flask (I litre), or preferably in a tin bottle furnished with reflu. condenser. The use of a tin vessel obviates certain clitli-cultiesof filtration which the solution of the silica by the action of the alkali on the glass entails. The liquid, after boilinjg, is carefully neutralised with cone, hydrochloric acid (it is acl is-able to remove a little of the solution beforehand in case overshooting the mark) and an excess of calcium chloride solution is added to the hot liquid. The mixture is left overni hl. and the calcium salts filtered off at the pump, washed with water, and well pressed. [Pg.122]

Severe attack frequently occurs at a water-line, which in practice can range from structural steel partly immersed in a natural water to a lacquered tin can used for containing emulsion paint. This can be illustrated by adding increeising amounts of sodium carbonate to a sodium chloride solution in which a steel plate is partly immersed (Fig. 1.48c, d and e). With increase in concentration of the inhibitor, attack decreases and becomes confined to the water-line. The attack at the water-line is intense and is characterised by a triangular pasty mass of corrosion products bounded on the upper surface by a dark-brown membrane that follows the contour of the water-line. The mechanism of water-line attack is not clear, but it is likely that the membrane of corrosion products results in the formation of an occluded cell, in which the anolyte and catholyte are prevented from mixing. These occluded cells are discussed in more detail subsequently. [Pg.160]

Tin(II) chloride solution. Dissolve lOg of tin(II) chloride dihydrate in 100mL of 1M hydrochloric acid. [Pg.181]

The above procedure may be adapted to the determination of molybdenum in steel. Dissolve a 1.00 g sample of the steel (accurately weighed) in 5 mL of 1 1 hydrochloric acid and 15 mL of 70 per cent perchloric acid. Heat the solution until dense fumes are evolved and then for 6-7 minutes longer. Cool, add 20 mL of water, and warm to dissolve all salts. Dilute the resulting cooled solution to volume in a 1 L flask. Pipette 10.0 mL of the diluted solution into a 50 mL separatory funnel, add 3 mL of the tin(II) chloride solution, and continue as detailed above. Measure the absorbance of the extract at 465 rnn with a spectrophotometer, and compare this value with that obtained with known amounts of molybdenum. Use the calibration curve prepared with equal amounts of iron and varying quantities of molybdenum. If preferred, a mixture of 3-methylbutanol and carbon tetrachloride, which is heavier than water, can be used as extractant. [Pg.181]

Note. Under the above conditions of determination the following elements interfere in the amount specified when the amount of Mo is 10 fig (error greater than 3 per cent) V, 0.4 mg, yellow colour [interference prevented by washing extract with tin(II) chloride solution] Cr(VI), 2 mg, purple colour W( VI), 0.15 mg, yellow colour Co, 12 mg, slight green colour Cu, 5 mg Pb, 10 mg Ti(III), 30 mg (in presence of sodium fluoride). [Pg.181]

The small amount of mercury(I) chloride in suspension has no appreciable effect upon the oxidising agent used in the subsequent titration, but if a heavy precipitate forms, or a grey or black precipitate is obtained, too much tin(II) solution has been used the results are inaccurate and the reduction must be repeated. Finely divided mercury reduces permanganate or dichromate ions and also slowly reduces Fe3+ ions in the presence of chloride ion. [Pg.415]

If a drop or two of tin(II) chloride solution is added to prevent re-oxidation of the Fe(II) salt by air, precipitation of the barium sulphate may be made in boiling solution according to the usual procedure (Section 11.72). [Pg.495]

Transfer an aliquot portion of the arsenate solution, having a volume of 25 mL and containing not more than 20 jug of arsenic, to the 50 mL Pyrex evolution vessel A shown in Fig. 17.17, and add sufficient concentrated hydrochloric acid to make the total volume present in the solution 5-6 mL, followed by 2 mL of the potassium iodide solution and 0.5 mL of the tin(II) chloride solution. Allow to stand at room temperature for 20-30 minutes to permit the complete reduction of the arsenate. [Pg.682]

Re(VII), Mo(VI) and V(V) cations are detected by first spraying the chromatogram with tin(II) chloride solution (10% in 6 N hydrochloric acid) and then with ammonium thiocyanate solution (S0% in water). This leads to the formation of orange, pink or yellow-colored complexes [2]. [Pg.84]

Treat 3 ml 15 percent aqueous tin(ll) chloride solution with 15 ml hydrochloric acid (32%) and dilute with 180 ml water [1, 2]. [Pg.220]

Tin chloride pentahydrate (SnCU-5H20) and zirconyl nitrate hydrate (Zr0(N03)2 6H20) were used as precursors of catalysts. These precursors were dissolved in the distilled water with stirring. Ammonium hydroxide solution was dropped into an aqueous solution of the... [Pg.249]

In perchloric acid media the reaction is extremely slow and is complicated by the formation of polymeric species of tin, and by heterogeneity. Rabideau has examined the kinetics in mixed perchlorate-chloride solutions, in which media no turbidity is apparent. The rate expression is complex, viz. [Pg.266]

Current flow at electrode surfaces often involves several simultaneous electrochemical reactions, which differ in character. For instance, upon cathodic polarization of an electrode in a mixed solution of lead and tin salt, lead and tin ions are discharged simultaneously, and from an acidic solution of zinc salt, zinc is deposited, and at the same time hydrogen is evolved. Upon anodic polarization of a nonconsumable electrode in chloride solution, oxygen and chlorine are evolved in parallel reactions. [Pg.235]

V. H. Aprahamian and D. G. Demopoulos, The Solution Chemistry and Solvent Extraction Behaviour of copper, iron, nickel, zinc, lead, tin, Ag, arsenic, antimony, bismuth, selenium and tellurium in Acid Chloride Solutions Reviewed from the Standpoint of PGM Refining, Mineral Processing and Extractive Metallurgy Review, Vol. 14, p. 143,1995. [Pg.579]

B. Reduction of Dinitrodurene.—A solution of 90 g. of dini-trodurene in 1 1. of glacial acetic acid is boiled in a 12-I. flask (Note 6) 700 g. of stannous chloride is dissolved in 800 cc. of concentrated hydrochloric acid and heated to boiling. The heat is removed from the acetic acid solution of the nitro compound, and the stannous chloride solution is poured very carefully (during about ten minutes) into the dinitrodurene solution. The reaction is complete in fifteen minutes, and as the solution cools the stannic chloride compound of the diamine begins to crystallize. The reaction mixture is cooled to io° in an ice-water bath, and the solid is filtered off by suction, washed twice with 50 cc. of 95 per cent ethyl alcohol and twice with 50 cc. of ether, and dried. The filtrates from the tin compound contain very little of the reduction product and may be discarded. The composition of this compound is [G (CH i)4(NH2-HCI)2l2-SnCl4, and it crystallizes from the reaction mixture in fine, glistening plates which are almost colorless. The yield is 145 g. (97 per cent of the theoretical amount). [Pg.84]

The second processing step consisted of salt decomposition with the subsequent reduction to pure metal. The method of chemical deposition of metal salts from the water salt solution with the subsequent reduction to pure metal by liquid phase reducer has been applied to prepare graphite-tin CMs. In this case tin chloride was used for impregnation and potassium tetrahydroborate was used as liquid phase reducer. [Pg.362]

The use of palladium(II) sulfoxide complexes as catalyst precursors for polymerization has met with mixed results thus a report of a palla-dium(II) chloride-dimethyl sulfoxide system as a catalyst precursor for phenylacetylene polymerization suggests similar results to those obtained using tin chloride as catalyst precursor (421). However, addition of dimethyl sulfoxide to solutions of [NH fPdCh] decreases the activity as a catalyst precursor for the polymerization of butadiene (100). Dimethyl sulfoxide complexes of iron have also been mentioned as catalyst precursors for styrene polymerization (141). [Pg.160]

Sodium Chloride To 2 ml of a 20% w/v soln. of NaCl in C02-free DW, add sufficient DW to make 100 ml. To 100 ml of this soln. add 4 ml of sulphomolybdic solution, shake, add 0.1 ml of dilute tin(II) chloride solution, allow to stand for 10 minutes and examine 20 ml of the resulting solution. Any colour produced is not more intense than that produced in 20 ml of a soln. obtained by treating a mixture of 2 ml of phsphate standard solution (= 5 ppm P04) and 98 ml DW in the same manner. [Pg.37]


See other pages where Tin chloride solution is mentioned: [Pg.279]    [Pg.279]    [Pg.73]    [Pg.479]    [Pg.279]    [Pg.65]    [Pg.65]    [Pg.259]    [Pg.468]    [Pg.181]    [Pg.415]    [Pg.698]    [Pg.115]    [Pg.278]    [Pg.327]    [Pg.226]    [Pg.891]    [Pg.320]    [Pg.406]   
See also in sourсe #XX -- [ Pg.406 ]




SEARCH



Chloride solutions

Tin chloride

© 2024 chempedia.info