Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-dependent measurements kinetics

Since around the mid-1990s, there has been a proliferation of hydrate time-dependent studies. These include macroscopic, mesoscopic, and molecular-level measurements and modeling efforts. A proliferation of kinetic measurements marks the maturing of hydrates as a field of research. Typically, research efforts begin with the consideration of time-independent thermodynamic equilibrium properties due to relative ease of measurement. As an area matures and phase equilibrium thermodynamics becomes better defined, research generally turns to time-dependent measurements such as kinetics and transport properties. [Pg.17]

In this study, in order to better understand the fundamentals of the laser-cluster interaction, we have carried out systematic investigations of the properties of X-ray radiation from high-density and high-temperature cluster plasma created by the action of superintense laser irradiation. The interrelationship between the X-ray radiation properties and ion kinetic energies has been examined for the first time via simultaneous measurements of X-ray radiation spectra and ion energy spectra. The time scale and mechanism of the X-ray emission process are discussed here based on a time-dependent plasma kinetics model. Moreover, in order to demonstrate the practical capabilities of the X-rays thus produced, pulse X-ray diffraction from an Si crystal using this source has been examined. [Pg.232]

There are two main reasons for this lack of use. First, almost all commercial instruments for chemical measurement are expressly designed for steady-state or equilibrium measurement, and do not perform satisfactorily when used for quantitative time-dependent measurement. Second, the practice of analytical chemistry is conservative, and new methods are accepted slowly, particularly methods that introduce another parameter that is difficult to control—in this case, time. However, recent developments in instrumentation are likely to change the present situation, and kinetic-based analytical techniques are likely to become commonplace in the next decade. Consequently, a chapter on this subject is included in this text. [Pg.524]

Figure 2.4 Measured time-dependent H+ kinetic energy distributions for two-colour XUV+IR dissociative ionization of Hj, with 7fs IR laser pulses (a) and 35 fs IR laser pulses (b). Figure 2.4 Measured time-dependent H+ kinetic energy distributions for two-colour XUV+IR dissociative ionization of Hj, with 7fs IR laser pulses (a) and 35 fs IR laser pulses (b).
As a final point, it should again be emphasized that many of the quantities that are measured experimentally, such as relaxation rates, coherences and time-dependent spectral features, are complementary to the thennal rate constant. Their infomiation content in temis of the underlying microscopic interactions may only be indirectly related to the value of the rate constant. A better theoretical link is clearly needed between experimentally measured properties and the connnon set of microscopic interactions, if any, that also affect the more traditional solution phase chemical kinetics. [Pg.891]

For example, if the molecular structure of one or both members of the RP is unknown, the hyperfine coupling constants and -factors can be measured from the spectrum and used to characterize them, in a fashion similar to steady-state EPR. Sometimes there is a marked difference in spin relaxation times between two radicals, and this can be measured by collecting the time dependence of the CIDEP signal and fitting it to a kinetic model using modified Bloch equations [64]. [Pg.1616]

The key to experimental gas-phase kinetics arises from the measurement of time, concentration, and temperature. Chemical kinetics is closely linked to time-dependent observation of concentration or amount of substance. Temperature is the most important single statistical parameter influencing the rates of chemical reactions (see chapter A3.4 for definitions and fiindamentals). [Pg.2114]

The nitration of phenylpyridines and related compounds has attracted attention for a long time, and measurements of isomer proportions have been made for several compounds of this type. Nitration occurs in the phenyl ring. For 2-phenylpyridine and 2-phenylpyridine i-oxide measurements of the dependence of rate of nitration upon acidity in 75-81 % sulphuric acid at 25 °C show that both compounds are nitrated as their cations (table 8.1). The isomer distribution did not depend significantly upon the acidity, and by comparison with the kinetic data for quinolinium ( 10.4.2) the partial rate factors illustrated below were obtained.They should be compared with those for the nitration of 2-nitrobiphenyl ( 10.1). The protonated heterocyclic groups are much... [Pg.206]

In spite of this dominance of heat flow, the solidification speed of pure metals still obeys eqn. (6.15), and depends on temperature as shown in Fig. 6.6. But measurements of v(T) are almost impossible for metals. When the undercooling at the interface is big enough to measure easily (T, -T 1°C) then the velocity of the interface is so large (as much as 1 m s 0 that one does not have enough time to measure its temperature. However, as we shall see in a later case study, the kinetics of eqn. (6.15) have allowed the development of a whole new range of glassy metals with new and exciting properties. [Pg.63]

In photoluminescence one measures physical and chemical properties of materials by using photons to induce excited electronic states in the material system and analyzing the optical emission as these states relax. Typically, light is directed onto the sample for excitation, and the emitted luminescence is collected by a lens and passed through an optical spectrometer onto a photodetector. The spectral distribution and time dependence of the emission are related to electronic transition probabilities within the sample, and can be used to provide qualitative and, sometimes, quantitative information about chemical composition, structure (bonding, disorder, interfaces, quantum wells), impurities, kinetic processes, and energy transfer. [Pg.29]

Schmid et al. studied in detail the sulfonation reaction of fatty acid methyl esters with sulfur trioxide [37]. They measured the time dependency of the products formed during ester sulfonation. These measurements together with a mass balance confirmed the existence of an intermediate with two S03 groups in the molecule. To decide the way in which the intermediate is formed the measured time dependency of the products was compared with the complex kinetics of different mechanisms. Only the following two-step mechanism allowed a calculation of the measured data with a variation of the velocity constants in the kinetic differential equations. [Pg.466]

The sodium and calcium pumps can be isolated to near purity and still exhibit most of the biochemical properties of the native pump. Some kinetic properties of these pumps in native membranes are altered or disappear as membrane preparations are purified. For example, when measured in intact membranes, the time-dependencies of phosphorylation and dephosphorylation of the pump catalytic sites exhibit biphasic fast to slow rate transition this characteristic progressively disappears as the membranes are treated with mild detergents. One suggested explanation is that, as the pumps begin to cycle, the catalytic subunits associate into higher oligomers that may permit more efficient transfer of the energy from ATP into the ion transport process [29, 30], Some structural evidence indicates that Na,K pumps exist in cell membranes as multimers of (a 3)2 [31]. [Pg.82]

Strictly speaking, given the violations of the assumptions underlying Eq. (5) discussed earlier, the concept of aw should not be applied to food systems. However, the concept of aw has proven to be an extremely useful and practical tool in both the food industry and in food science research (Franks, 1991). Rather than discarding the use of aw in foods, perhaps it would be more prudent at this point for one to stress the time-dependent nature (i.e., kinetics) of aw measurements and perhaps, as suggested by Slade and Levine (1991) and Fennema (1996), to use the term relative vapor pressure (RVP, the measured term) in place of aw (the theoretical term). To avoid confusion, the term aw will continue to be used in this review, with the understanding that what is most often being measured is RVP. [Pg.27]

Watanabe and Ohnishi [39] have proposed another model for the polymer consumption rate (in place of Eq. 2) and have also integrated their model to obtain the time dependence of the oxide thickness. Time dependent oxide thickness measurement in the transient regime is the clearest way to test the kinetic assumptions in these models however, neither model has been subjected to experimental verification in the transient regime. Equation 9 may be used to obtain time dependent oxide thickness estimates from the time dependence of the total thickness loss, but such results have not been published. Hartney et al. [42] have recently used variable angle XPS spectroscopy to determine the time dependence of the oxide thickness for two organosilicon polymers and several etching conditions. They did not present kinetic model fits to their results, nor did they compare their results to time dependent thickness estimates from the material balance (Eq. 9). More research on the transient regime is needed to determine the validity of Eq. 10 or the comparable result for the kinetic model presented by Watanabe and Ohnishi [39]. [Pg.224]

Because the Adler model is time dependent, it allows prediction of the impedance as well as the corresponding gaseous and solid-state concentration profiles within the electrode as a function of time. Under zero-bias conditions, the model predicts that the measured impedance can be expressed as a sum of electrolyte resistance (Aeiectroiyte), electrochemical kinetic impedances at the current collector and electrolyte interfaces (Zinterfaces), and a chemical impedance (Zchem) which is a convolution of contributions from chemical processes including oxygen absorption. solid-state diffusion, and gas-phase diffusion inside and outside the electrode. [Pg.571]

Kinetics in polycrystals differ from those in solution phase, because in the former, the thermal reactions usually follow a nonexponential rate law, something that is attributed to a multiple-site problem. In contrast to a first-order reaction in solution, the rate constant of a nonexponential process in the solid state is time dependent molecules located in the reactive site will have decayed during the warmup procedure and/or the initial stage of the reaction at the given temperature. These considerations need to be taken into account when the decay of the intensity of the IR signals in a matrix at low temperature are used for kinetic measurements [70]. [Pg.142]

Figure 2.4. In vivo measurement of blood-brain barrier (BBB) permeability, (a) Internal carotid artery perfusion technique (i) in the rat. Other branches of the carotid artery are ligated or electrically coagulated (o, occipital artery p, pterygopalatine artery). The external carotid artery (e) is cannulated and the common carotid artery (c) ligated. Perfusion time may range from 15 s to 10 min, depending on the test substance. It is necessary to subtract the intravascular volume, Vo, from (apparent volume of distribution), to obtain true uptake values and this may be achieved by inclusion of a vascular marker in the perfusate, for example labelled albumin. Time-dependent analysis of results in estimates of the unidirectional brain influx constant Ki (pi min which is equivalent within certain constraints to the PS product. BBB permeability surface area product PS can be calculated from the increase in the apparent volume of distribution Vd over time. Capillary depletion, i.e. separation of the vascular elements from the homogenate by density centrifugation, can discriminate capillary uptake from transcytosis. (b) i.v. bolus kinetics. The PS product is calculated from the brain concentration at the sampling time, T, and the area under the plasma concentration-time curve, AUC. Figure 2.4. In vivo measurement of blood-brain barrier (BBB) permeability, (a) Internal carotid artery perfusion technique (i) in the rat. Other branches of the carotid artery are ligated or electrically coagulated (o, occipital artery p, pterygopalatine artery). The external carotid artery (e) is cannulated and the common carotid artery (c) ligated. Perfusion time may range from 15 s to 10 min, depending on the test substance. It is necessary to subtract the intravascular volume, Vo, from (apparent volume of distribution), to obtain true uptake values and this may be achieved by inclusion of a vascular marker in the perfusate, for example labelled albumin. Time-dependent analysis of results in estimates of the unidirectional brain influx constant Ki (pi min which is equivalent within certain constraints to the PS product. BBB permeability surface area product PS can be calculated from the increase in the apparent volume of distribution Vd over time. Capillary depletion, i.e. separation of the vascular elements from the homogenate by density centrifugation, can discriminate capillary uptake from transcytosis. (b) i.v. bolus kinetics. The PS product is calculated from the brain concentration at the sampling time, T, and the area under the plasma concentration-time curve, AUC.
The time constants measured near 665 and 795 nm at 295 K in PVA film are in good agreement with those measured at 285 K in flowed buffer (Table 1). Even though the kinetics are different at different wavelengths, the temperature dependence in each region appears to be similar the time constant decreases by about a factor of two between 295-285 and 76 K, and is the same at 76 and 5 K. [Pg.211]

More recently, Landis et al. studied the polymerisation kinetics of 1-hexene with (EBI)ZrMe( t-Me)B(C5F5)3 64 as catalyst in toluene [EBI = rac-C2H4(Ind)2]. Catalyst initiation was defined as the first insertion of monomer into the Zr-Me bond, 65 (Scheme 8.30). Deuterium quenching with MeOD was used to determine the number of catalytically active sites by NMR. The time dependence of the deuterium label in the polymer was taken as a measure of the rate of catalyst initiation. This method also provides information of the type of bonding of the growing polymer chain to zirconium, as n-or sec-alkyl, allyl etc. Hexene polymerisation is comparatively slow, with high regio- and stereoselectivity there was no accumulation of secondary zirconium alkyls as dormant states [96]. [Pg.336]


See other pages where Time-dependent measurements kinetics is mentioned: [Pg.278]    [Pg.202]    [Pg.127]    [Pg.642]    [Pg.582]    [Pg.174]    [Pg.733]    [Pg.1605]    [Pg.2115]    [Pg.507]    [Pg.470]    [Pg.391]    [Pg.455]    [Pg.8]    [Pg.42]    [Pg.199]    [Pg.109]    [Pg.243]    [Pg.101]    [Pg.104]    [Pg.14]    [Pg.104]    [Pg.199]    [Pg.746]    [Pg.48]    [Pg.65]    [Pg.698]    [Pg.16]    [Pg.53]    [Pg.170]    [Pg.336]    [Pg.193]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 ]




SEARCH



Kinetic dependence

Kinetic measurement

Kinetics measurements

Measuring time

Time measurement

Time-dependent measurements

© 2024 chempedia.info