Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Threonine, 493 Table

The value of reduced LD in the quinonoid band of the enzyme complexes with L-alanine and oxindolyl-L-alanine proved to be close to that in the absorption band of the external aldimine formed with L-threonine (Table 9.2). It does not follow from this coincidence that the external aldimine and quinonoid have a similar orientation in the active site. The two intermediates, in fact, differ in their orientation this is because the directions of the transition dipole moment in the pyridine ring of the aldimine and quinonoid are very different.72 ... [Pg.185]

The tert-butyl ethers of serine and threonine are available by tert-butylation of various starting materials, e.g. Z-Ser-OMe/Z-Thr-OMe,P l Z-Ser-ONbz/Z-Thr-ONbz,P l and H-Ser-OMe TosOH/H-Thr-OMe -TosOHt l (see also Table 3). Analogous to benzyl ether formation, the tert-butyl ethers can also be produced via 4-substituted 2,2-difluoro-l,3,2-ox-azaborolidin-5-ones.t In most cases, isobutylene with 4-toluenesulfonic add, or a concentrated inorganic acid is used as catalyst for tert-butylation. The use of Fmoc-Ser(tBu)-OH and Fmoc-Thr(tBu)-OH in solid-phase peptide synthesis is very well established. These annino acid derivatives can be synthesized either by introduction of the Fmoc group into H-Ser(tBu)-OH and H-Thr(tBu)-OH or by tert-butylation of the Fmoc-protected serine and threonine (Table 3). ... [Pg.353]

The trimethylsilyl group was the first to be developed and is widely used for the protection of serine and threonine (Table 6). Chlorotrimethylsilane, l,14 3,3,3-hexamethyldisilazane, and A(0-bis(trimethylsilyl)acetamide are commercially available reagents used for the conversion of alcohols into the corresponding trimethylsilyl derivatives.Furthermore, trimethylsilyl cyanide has been used to protect the side chains of serine, threonine, and ty-rosine.f This silyl protection allows the formation of A -carboxyanhydrides from H-Ser(TMS)-OH and H-Thr(TMS)-OH, and their application in peptide synthesis in the aqueous phase.f l The TMS group can be removed under various conditions, depending on the kind of functional group to which it is bound the TMS ethers are more stable than related amino or carboxy derivatives.These differences in stability allow the direct application of completely silylated hydroxy amino acids in peptide synthesis.b ... [Pg.360]

The smaller inactive components of AFGP (6-8) contain proline in addition to alanine and threonine (Tables II and IV). Chan (1971)... [Pg.207]

The prefered phosphorylation site of the two LHC II-apoproteins of 24 and 29 kD must be at a threonine (Table 1). This is in good agreement with results of LHC Il-apoproteins of other species (e.g. pea (3)), where the phosphorylation site is localized at a threonine near the N-terminus. [Pg.1217]

Draw stereochemically correct structural formulas for isoleucine and threonine (Table 26-1). What is a systematic name for threonine ... [Pg.1219]

The isolation and purification of speract required 20 Uters of this jelly, which was obtained from 5000 female urchins. The speract obtained was actually a mixture of two peptides, designated HI and H2. The term speract refers only to peptide H2. Peptide HI differs from H2 by one amino add and is designated [Thr J-speract that is, the fifth amino acid from the N-terminal acid is threonine (Table 25.2). [Pg.2055]

The asterisk signifies an asymmetric carbon. AH of the amino acids, except glycine, have two optically active isomers designated D- or L-. Isoleucine and threonine also have centers of asymmetry at their P-carbon atoms (1,10). Protein amino acids are of the L-a-form (1,10) as illustrated in Table 1. [Pg.269]

Many kinds of amino acids (eg, L-lysine, L-omithine, t-phenylalanine, L-threonine, L-tyrosine, L-valine) are accumulated by auxotrophic mutant strains (which are altered to require some growth factors such as vitamins and amino acids) (Table 6, Primary mutation) (22). In these mutants, the formation of regulatory effector(s) on the amino acid biosynthesis is genetically blocked and the concentration of the effector(s) is kept low enough to release the regulation and iaduce the overproduction of the corresponding amino acid and its accumulation outside the cells (22). [Pg.289]

An estimation of the amount of amino acid production and the production methods are shown ia Table 11. About 340,000 t/yr of L-glutamic acid, principally as its monosodium salt, are manufactured ia the world, about 85% ia the Asian area. The demand for DL-methionine and L-lysiae as feed supplements varies considerably depending on such factors as the soybean harvest ia the United States and the anchovy catch ia Pern. Because of the actions of D-amiao acid oxidase and i.-amino acid transamiaase ia the animal body (156), the D-form of methionine is as equally nutritive as the L-form, so that DL-methionine which is iaexpensively produced by chemical synthesis is primarily used as a feed supplement. In the United States the methionine hydroxy analogue is partially used ia place of methionine. The consumption of L-lysiae has iacreased ia recent years. The world consumption tripled from 35,000 t ia 1982 to 100,000 t ia 1987 (214). Current world consumption of L-tryptophan and i.-threonine are several tens to hundreds of tons. The demand for L-phenylalanine as the raw material for the synthesis of aspartame has been increasing markedly. [Pg.291]

Cottonseed. When compared with FAO/WHO/UNU essential amino acid requirements (see Table 3), cottonseed proteins are low in lysine, threonine, and leucine for 2 to 5-year-old children, yet meet all requirements for adults. [Pg.301]

Pea.nuts, The proteins of peanuts are low in lysine, threonine, cystine plus methionine, and tryptophan when compared to the amino acid requirements for children but meet the requirements for adults (see Table 3). Peanut flour can be used to increase the nutritive value of cereals such as cornmeal but further improvement is noted by the addition of lysine (71). The trypsin inhibitor content of raw peanuts is about one-fifth that of raw soybeans, but this concentration is sufficient to cause hypertrophy (enlargement) of the pancreas in rats. The inhibitors of peanuts are largely inactivated by moist heat treatment (48). As for cottonseed, peanuts are prone to contamination by aflatoxin. FDA regulations limit aflatoxin levels of peanuts and meals to 100 ppb for breeding beef catde, breeding swine, or poultry 200 ppb for finishing swine 300 ppb for finishing beef catde 20 ppb for immature animals and dairy animals and 20 ppb for humans. [Pg.301]

Sundower Seed. Compared to the FAO/WHO/UNU recommendations for essential amino acids, sunflower proteins are low in lysine, leucine, and threonine for 2 to 5-year-olds but meet all the requirements for adults (see Table 3). There are no principal antinutritional factors known to exist in raw sunflower seed (35). However, moist heat treatment increases the growth rate of rats, thereby suggesting the presence of heat-sensitive material responsible for growth inhibitions in raw meal (72). Oxidation of chlorogenic acid may involve reaction with the S-amino group of lysine, thus further reducing the amount of available lysine. [Pg.301]

Note carefully the difference between enantiomers and diastereomers. Enantiomers have opposite configurations at all chirality centers, whereas diastereomers have opposite configurations at some (one or more) chirality centers but the same configuration at others. A full description of the four stereoisomers of threonine is given in Table 9.2. Of the four, only the 2S,3R isomer, [o]D= -28.3, occurs naturally in plants and animals and is an essential human nutrient. This result is typical most biological molecules are chiral, and usually only one stereoisomer is found in nature. [Pg.303]

Table 9.2 I Relationships among the Four Stereoisomers of Threonine... Table 9.2 I Relationships among the Four Stereoisomers of Threonine...
Peptidases have been classified by the MEROPS system since 1993 [2], which has been available viatheMEROPS database since 1996 [3]. The classification is based on sequence and structural similarities. Because peptidases are often multidomain proteins, only the domain directly involved in catalysis, and which beais the active site residues, is used in comparisons. This domain is known as the peptidase unit. Peptidases with statistically significant peptidase unit sequence similarities are included in the same family. To date 186 families of peptidase have been detected. Examples from 86 of these families are known in humans. A family is named from a letter representing the catalytic type ( A for aspartic, G for glutamic, M for metallo, C for cysteine, S for serine and T for threonine) plus a number. Examples of family names are shown in Table 1. There are 53 families of metallopeptidases (24 in human), 14 of aspartic peptidases (three of which are found in human), 62 of cysteine peptidases (19 in human), 42 of serine peptidases (17 in human), four of threonine peptidases (three in human), one of ghitamicpeptidases and nine families for which the catalytic type is unknown (one in human). It should be noted that within a family not all of the members will be peptidases. Usually non-peptidase homologues are a minority and can be easily detected because not all of the active site residues are conserved. [Pg.877]

Table 1 presents the chemical composition and some properties of both gums reported by Osman et al., 1993 and Williams Phillips, et al., 2000. Despite having different protein content, amino acid composition is similar in both gums. Recently, Mahendran et al., 2008, reported the GA amino acid composition in Acacia Senegal, being rich in hydroxyproline, serine, threonine, leucine, glycine, histidine. Table 2. [Pg.5]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

On the other hand, resonance assignments for CP of threonine and serine, and C and Cy of hydroxy proline, were difficult to make, because of their proximity to carbohydrate carbon resonances. In most cases then, the resonances were assigned on the basis of the effects of pH on the chemical shifts of those resonances. It was shown that the chemical shifts for the carbohydrate carbon resonances were virtually unaffected (AS 0.4 p.p.m.) when going from the cationic state (pH 2) to the anionic state (pH 11) of the amino acid residues. The chemical shifts of C and CP of the amino acid residues, however, shifted considerably (up to 3.1 and 6.6 p.p.m. for C" and CP, respectively see Table VI). [Pg.24]

The physical properties of the synthetic glycosyl derivatives of l-asparagine, L-serine, and L-threonine are reported in Tables I-V. Derivatives characterized otherwise, but without m.p. and optical rotation, have also been included. Whenever more than one reference is given, the physical constants are taken from the references printed in bold letters. The abbreviations used in the m.p. column are as follows foam., foaming dec., decomposing and soft., softening. [Pg.181]


See other pages where Threonine, 493 Table is mentioned: [Pg.317]    [Pg.317]    [Pg.317]    [Pg.317]    [Pg.191]    [Pg.540]    [Pg.45]    [Pg.289]    [Pg.293]    [Pg.302]    [Pg.148]    [Pg.247]    [Pg.248]    [Pg.466]    [Pg.515]    [Pg.79]    [Pg.22]    [Pg.832]    [Pg.1149]    [Pg.178]    [Pg.184]    [Pg.166]    [Pg.338]    [Pg.192]    [Pg.72]    [Pg.350]    [Pg.24]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.28]    [Pg.39]    [Pg.142]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Threonin

Threoninal

Threonine

© 2024 chempedia.info