Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics phase changes

Most liquids respond to a temperature rise through a thermodynamic phase change to gas. For ignition to occur, the fuel concentration in air must be in a range that defines a flammable mixture. These bounding limits are commonly referred to as the lower flammability limit (LFL) and upper flammable limit (UFL). These are the lowest and highest fuel concentrations in air (by volume) that will support flame propagation. Fuel concentrations below the LFL or above the UFL are too lean or rich, respectively, and will not support combustion. [Pg.409]

The connections between simulation and thermodynamics can be carried further. Simulations can be set up to be constant volume, pressure, temperature, and so on. Some of the most sophisticated simulations are those involving multiple phases or phase changes. These techniques are discussed further in Chapter 7. [Pg.15]

Tantalum Oxides. Tantalum pentoxide [1314-61 -0] Ta20, (mp = 1880°C, density = 8.73 g/cm ) is a white powder existing in two thermodynamically stable modifications. The orthorombic P-phase changes at 1360°C into the tetragonal a-modiftcation. The existence of an S-modiftcation has also been reported (70). Tantalum pentoxide reacts slowly with hot hydrofluoric acid but is insoluble in water and in most solutions of acids and alkalies. For analytical purposes, it can be dissolved by fusion with alkali hydroxides, alkali carbonates, and potassium pyrosulfate. [Pg.332]

Thus, in a reversible process that is both isothermal and isobaric, dG equals the work other than pressure-volume work that occurs in the process." Equation (3.96) is important in chemistry, since chemical processes such as chemical reactions or phase changes, occur at constant temperature and constant pressure. Equation (3.96) enables one to calculate work, other than pressure-volume work, for these processes. Conversely, it provides a method for incorporating the variables used to calculate these forms of work into the thermodynamic equations. [Pg.147]

Experience indicates that the Third Law of Thermodynamics not only predicts that So — 0, but produces a potential to drive a substance to zero entropy at 0 Kelvin. Cooling a gas causes it to successively become more ordered. Phase changes to liquid and solid increase the order. Cooling through equilibrium solid phase transitions invariably results in evolution of heat and a decrease in entropy. A number of solids are disordered at higher temperatures, but the disorder decreases with cooling until perfect order is obtained. Exceptions are... [Pg.177]

Let us mention some examples, that is, the passivation potential at which a metal surface suddenly changes from an active to a passive state, and the activation potential at which a metal surface that is passivated resumes active dissolution. In these cases, a drastic change in the corrosion rate is observed before and after the characteristic value of electrode potential. We can see such phenomena in thermodynamic phase transitions, e.g., from solid to liquid, from ferromagnetism to paramagnetism, and vice versa.3 All these phenomena are characterized by certain values... [Pg.218]

To avoid this phase change, zirconia is stabilized in the cubic phase by the addition of a small amount of a divalent or trivalent oxide of cubic symmetry, such as MgO, CaO, or Y2O3. The additive oxide cation enters the crystal lattice and increases the ionic character of the metal-oxygen bonds. The cubic phase is not thermodynamically stable below approximately 1400°C for MgO additions, 1140°C for CaO additions, and below 750°C for Y2O3 additions. However, the diffusion rates for the cations are so low at Xhtstsubsolidus temperatures that the cubic phase can easily be quenched and retained as a metastable phase. Zirconia is commercially applied by thermal spray. It is also readily produced by CVD, mostly on an experimental basis. Its characteristics and properties are summarized in Table 11.8. [Pg.311]

Phase changes, which convert a substance from one phase to another, have characteristic thermodynamic properties Any change from a more constrained phase to a less constrained phase increases both the enthalpy and the entropy of the substance. Recall from our description of phase changes in Chapter 11 that enthalpy increases because energy must be provided to overcome the intermolecular forces that hold the molecules in the more constrained phase. Entropy increases because the molecules are more dispersed in the less constrained phase. Thus, when a solid melts or sublimes or a liquid vaporizes, both A H and A S are positive. Figure 14-18 summarizes these features. [Pg.1020]

The study of how fluids interact with porous solids is itself an important area of research [6], The introduction of wall forces and the competition between fluid-fluid and fluid-wall forces, leads to interesting surface-driven phase changes, and the departure of the physical behavior of a fluid from the normal equation of state is often profound [6-9]. Studies of gas-liquid phase equilibria in restricted geometries provide information on finite-size effects and surface forces, as well as the thermodynamic behavior of constrained fluids (i.e., shifts in phase coexistence curves). Furthermore, improved understanding of changes in phase transitions and associated critical points in confined systems allow for material science studies of pore structure variables, such as pore size, surface area/chemistry and connectivity [6, 23-25],... [Pg.305]

Lim, J.S., Bejan, A., and Kim, J.H., 1992, Thermodynamic optimization of phase change energy storage using two or more materials, ASME J. Energy Res. Technol. 114 84—90. [Pg.150]

Abstract. This section is an introduction into materials that can be used as Phase Change Materials (PCM) for heat and cold storage and their basic properties. At the beginning, the basic thermodynamics of the use of PCM and general physical and technical requirements on perspective materials are presented. Following that, the most important classes of materials that have been investigated and typical examples of materials to be used as PCM are discussed. These materials usually do not fulfill all requirements. Therefore, solution strategies and ways to improve certain material properties have been developed. The section closes with an up to date market review of commercial PCM, PCM composites and encapsulation methods. [Pg.257]

In this section, we will describe and explain the fundamentals for both, thermodynamic and commercial considerations. We will start looking at the basics of heat transfer in PCM, how the heat flux and time to complete a phase change are calculated. Later we will look at the design of complete storages to supply a warm or cold heat transfer fluid (liquid or gas) and discuss general design strategies. [Pg.280]

Since the pressure drop in two-phase flow is closely related to the flow pattern, most investigations have been concerned with local pressure drop in well-characterized two-phase flow patterns. In reality, the desired pressure drop prediction is usually over the entire flow channel length and covers various flow patterns when diabatic condition exist. Thus, a summation of local Ap values is necessary, assuming the phases are in thermodynamic equilibrium. The addition of heat in the case of single-component flow causes a phase change along the channel consequently, the vapor void increases and the phase (also velocity) distribution as well as the momentum of the flow vary accordingly. [Pg.217]

For two-phase flow, additional assumptions are made that thermodynamic phase equilibrium exists before and after the restriction (or expansion), and that no phase change occurs over the restriction. Romie (Lottes, 1961) wrote the equation for the momentum change across an abrupt expansion as... [Pg.241]

The slope of the line allows for the determination of the enthalpy of vaporization of water, A//Vap, and the y intercept yields the entropy of vaporization, A. S vap As both the enthalpy and the entropy of water increase as the phase change liquid — vapor occurs, the slope and y intercept of the Clausius-Clapeyron equation are negative and positive, respectively. At 373 K these thermodynamic quantities have values of AHvap = 40.657 kJ mol-1 and ASvap = 109.0 J K-1 mol-1. The leavening action due to water vapor or steam arises from the increased amount of water vapor that forms as pastry temperatures initially rise in the oven and then from the increased volume of the water vapor as temperatures continue... [Pg.68]

The implications for films cast from mixtures of enantiomers is that diagrams similar to those obtained for phase changes (i.e., melting point, etc.) versus composition for the bulk surfactant may be obtained if a film property is plotted as a function of composition. In the case of enantiomeric mixtures, these monolayer properties should be symmetric about the racemic mixture, and may help to determine whether the associations in the racemic film are homochiral, heterochiral, or ideal. Monolayers cast from non-enantiomeric chiral surfactant mixtures normally will not exhibit this feature. In addition, a systematic study of binary films cast from a mixture of chiral and achiral surfactants may help to determine the limits for chiral discrimination in monolayers doped with an achiral diluent. However, to our knowledge, there has never been any other systematic investigation of the thermodynamic, rheological and mixing properties of chiral monolayers than those reported below from this laboratory. [Pg.68]


See other pages where Thermodynamics phase changes is mentioned: [Pg.291]    [Pg.533]    [Pg.270]    [Pg.271]    [Pg.291]    [Pg.533]    [Pg.270]    [Pg.271]    [Pg.24]    [Pg.115]    [Pg.473]    [Pg.207]    [Pg.353]    [Pg.307]    [Pg.23]    [Pg.366]    [Pg.645]    [Pg.243]    [Pg.656]    [Pg.657]    [Pg.661]    [Pg.662]    [Pg.663]    [Pg.414]    [Pg.431]    [Pg.397]    [Pg.484]    [Pg.712]    [Pg.133]    [Pg.133]    [Pg.149]    [Pg.380]    [Pg.149]    [Pg.82]    [Pg.42]    [Pg.244]    [Pg.295]    [Pg.296]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Phase changes

Thermodynamic change

Thermodynamic phase

Thermodynamics change

© 2024 chempedia.info