Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic property characteristics

A quantitative theory of rate processes has been developed on the assumption that the activated state has a characteristic enthalpy, entropy and free energy the concentration of activated molecules may thus be calculated using statistical mechanical methods. Whilst the theory gives a very plausible treatment of very many rate processes, it suffers from the difficulty of calculating the thermodynamic properties of the transition state. [Pg.402]

Thermodynamic properties (71,72), force constants (73), and infrared absorption characteristics (74) are documented. The coordinatively unsaturated species, Ni(CO)2 and Ni(CO)2, also exist and the bonding and geometry data have been subjected to molecular orbital treatments (75,76). [Pg.11]

For cubic crystals, which iaclude sUicon, properties described by other than a zero- or a second-rank tensor are anisotropic (17). Thus, ia principle, whether or not a particular property is anisotropic can be predicted. There are some properties, however, for which the tensor rank is not known. In addition, ia very thin crystal sections, the crystal may have two-dimensional characteristics and exhibit a different symmetry from the bulk, three-dimensional crystal (18). Table 4 is a listing of various isotropic and anisotropic sUicon properties. Table 5 gives values for the more common physical properties and for some of the thermodynamic properties. Figure 5 shows some thermal properties. [Pg.529]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

It is clear that tire rate of growdr of a reaction product depends upon two principal characteristics. The first of these is the thermodynamic properties of the phases which are involved in the reaction since these determine the driving force for the reaction. The second is the transport properties such as atomic and electron diffusion, as well as thermal conduction, all of which determine the mobilities of particles during the reaction within the product phase. [Pg.253]

It follows that although the thermodynamic functions can be measured for a given distribution system, they can not be predicted before the fact. Nevertheless, the thermodynamic properties of the distribution system can help explain the characteristics of the distribution and to predict, quite accurately, the effect of temperature on the separation. [Pg.49]

Assignment of the l,2,4-triazolo[l,5-c]pyrimidine structures to the products obtained from the previously described cyclizations and not the alternative [4,3-c] structures has been rationalized and corroborated on the basis of (a) preference of cyclization at the more nucleophilic triazole ring N2 rather than at its less nucleophilic N4 (65JOC3601 88JMC1014), (b) inability of the obtained products to undergo acid- or base-catalyzed Dimroth rearrangement, a property characteristic of the thermodynamically less stable [4,3-c] isomers (91JMC281), (c) comparison with unequivocally prepared... [Pg.356]

Literature search shows that epoxy-based nanocomposites have been prepared by many researchers [34-38]. Becker et al. have prepared nanocomposites based on various high-functionahty epoxies. The mechanical, thermal, and morphological properties were also investigated thoroughly [39 3]. The cure characteristics, effects of various compatibilizers, thermodynamic properties, and preparation methods [16,17,44 9] have also been reported. ENR contains a reactive epoxy group. ENR-organoclay nanocomposites were investigated by Teh et al. [50-52]. [Pg.35]

Phase changes, which convert a substance from one phase to another, have characteristic thermodynamic properties Any change from a more constrained phase to a less constrained phase increases both the enthalpy and the entropy of the substance. Recall from our description of phase changes in Chapter 11 that enthalpy increases because energy must be provided to overcome the intermolecular forces that hold the molecules in the more constrained phase. Entropy increases because the molecules are more dispersed in the less constrained phase. Thus, when a solid melts or sublimes or a liquid vaporizes, both A H and A S are positive. Figure 14-18 summarizes these features. [Pg.1020]

Good electrical conductance is one of the characteristics of many though not all molten salts. This characteristic has often been employed industrially. Various models have been proposed for the mechanism of electrical conductance. Electrolytic conductivity is related to the structure, although structure and thermodynamic properties are not the main subjects of this chapter. Electrolytic conductivities of various metal chlorides at the melting points are given in Table 4 together with some other related properties. "... [Pg.124]

A large number of compounds of pharmaceutical interest are capable of being crystallized in either more than one crystal lattice structure (polymorphs), with solvent molecules included in the crystal lattice (solvates), or in crystal lattices that combine the two characteristics (polymorphic solvates) [122,123]. A wide variety of structural explanations can account for the range of observed phenomena, as has been discussed in detail [124,125]. The pharmaceutical implications of polymorphism and solvate formation have been recognized for some time, with solubility, melting point, density, hardness, crystal shape, optical and electrical properties, vapor pressure, and virtually all the thermodynamic properties being known to vary with the differences in physical form [126]. [Pg.363]

A systematic description of bond characteristics in intermetallic phases involves several different approaches. A bond characterization in intermetallics, as related to thermodynamic properties and considerations concerning the stability of intermetallic phases, has been reported by Ellner and Predel (1995). On this subject we observe the peculiar properties of alloys of extraordinary stability formed by... [Pg.236]

Loading and Compression Media. The loading procedures of the DAC depend on the thermodynamic properties and chemical characteristic of the sample. Liquid samples at ambient conditions are generally easy to be loaded, because a droplet can be positioned in the sample chamber to completely fill the gasket hole. Solid samples can be crumbled and cut in the desired dimensions and then positioned in the gasket hole. Powders as well can be loaded in the same way. [Pg.127]

It is this last characteristic that is used most frequently in testing thermodynamic functions for exactness. If the differential li/ of a thermodynamic quantity J is exact, then J is called a thermodynamic property or a state function. [Pg.17]

No adequate theoretical model based on the atomic characteristics of the ions has been developed yet that is capable of accounting for the thermodynamic properties... [Pg.462]

When applying the matrix method to very large values of m, it is only the largest root of the characteristic equation that is significant for calculating the thermodynamic properties of the system. For the particular matrix defined in Eq. (7.1.9), the characteristic equation is... [Pg.229]

The chemical, biological, and physical characteristics of the drug substance can be manipulated and hence optimized by conversion to a salt form. Every compound that exhibits acid or base characteristics can participate in salt formation. Various salts of the same compound often behave quite differently because of the physical, chemical, and thermodynamic properties they impart to the parent compound. Table 1 lists the top ten FDA approved commercially marketed final drug forms and Table 2... [Pg.247]

Recent work has shown 103) that for alkali halides the Debye characteristic temperature is not very sensitive to volume changes produced by thermal expansion. This probably indicates that, in general, volume changes of an adsorbent will not markedly affect its bulk thermodynamic properties. [Pg.283]

An example in this regard is provided by the titanium-promoted reductive dimerization [3-5] pentacyclic monoketones and their monomethylated analogs, as indicated in Scheme 1. We have successfully prepared these compounds in relatively large quantities (i.e., several hundred grams). Samples have been sent to other laboratories for evaluation of their fuel properties, selected thermodynamic properties, and combustion characteristics. [Pg.36]

In pHPLC, there are numerous types of columns used. The comparison and characterization of these columns are often discussed in terms of thermodynamic properties and kinetic characteristics. The retention factor, k, selectivity, a, and the peak asymmetry are believed to be representative parameters for the thermodynamic properties, while the kinetic characteristics are often expressed in dimensionless magnitudes of reduced plate height, h, separation impedance, E, and flow resistance factor, ( ). 3... [Pg.81]


See other pages where Thermodynamic property characteristics is mentioned: [Pg.35]    [Pg.285]    [Pg.248]    [Pg.518]    [Pg.187]    [Pg.136]    [Pg.172]    [Pg.266]    [Pg.611]    [Pg.586]    [Pg.390]    [Pg.28]    [Pg.19]    [Pg.144]    [Pg.858]    [Pg.126]    [Pg.98]    [Pg.67]    [Pg.1030]    [Pg.249]    [Pg.65]    [Pg.95]    [Pg.336]    [Pg.4]    [Pg.35]    [Pg.275]    [Pg.565]    [Pg.105]    [Pg.179]    [Pg.182]   
See also in sourсe #XX -- [ Pg.62 ]

See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Characteristic properties

Solids, characteristic temperature thermodynamic properties

Thermodynamics characteristics

© 2024 chempedia.info