Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium solubility thermodynamic

McFarland et al. recently [1] published the results of studies carried out on 22 crystalline compounds. Their water solubilities were determined using pSOL [21], an automated instrument employing the pH-metric method described by Avdeef and coworkers [22]. This technique assures that it is the thermodynamic equilibrium solubility that is measured. While only ionizable compounds can be determined by this method, their solubilities are expressed as the molarity of the unionized molecular species, the intrinsic solubility, SQ. This avoids confusion about a compound s overall solubility dependence on pH. Thus, S0, is analogous to P, the octanol/water partition coefficient in both situations, the ionized species are implicitly factored out. In order to use pSOL, one must have knowledge of the various pKas involved therefore, in principle, one can compute the total solubility of a compound over an entire pH range. However, the intrinsic solubility will be our focus here. There was one zwitterionic compound in this dataset. To obtain best results, this compound was formulated as the zwitterion rather than the neutral form in the HYBOT [23] calculations. [Pg.234]

The effect of substitutional impurities on the stability and aqueous solubility of a variety of solids is investigated. Stoichiometric saturation, primary saturation and thermodynamic equilibrium solubilities are compared to pure phase solubilities. Contour plots of pure phase saturation indices (SI) are drawn at minimum stoichiometric saturation, as a function of the amount of substitution and of the excess-free-energy of the substitution. SI plots drawn for the major component of a binary solid-solution generally show little deviation from pure phase solubility except at trace component fractions greater than 1%. In contrast, trace component SI plots reveal that aqueous solutions at minimum stoichiometric saturation can achieve considerable supersaturation with respect to the pure trace-component end-member solid, in cases where the major component is more soluble than the trace. [Pg.74]

Stoichiometric saturation measurements in carefully controlled laboratory experiments offer perhaps the most promising technique for the estimation of thermodynamic mixing parameters (3 Glynn and Reardon, Am. J. ScL, in press). Unfortunately, the results obtained can usually not be verified by a second independent and accurate method, such as reaction calorimetry or measurement of thermodynamic equilibrium solubilities (4). The conditions necessary in obtaining good stoichiometric saturation data (as opposed to thermodynamic equilibrium data) were discussed earlier. [Pg.85]

The true thermodynamic equilibrium constant, Ksp, for the solubility of AglOa, therefore, is... [Pg.173]

In this experiment the equilibrium constant for the dissociation of bromocresol green is measured at several ionic strengths. Results are extrapolated to zero ionic strength to find the thermodynamic equilibrium constant. Equilibrium Constants for Calcium lodate Solubility and Iodic Acid Dissociation. In J. A. Bell, ed. Chemical Principles in Practice. Addison-Wesley Reading, MA, 1967. [Pg.176]

It is well known that many compounds are able to change their physical form whilst suspended in solution. For example, a compound of interest may change from one polymorphic form to another, while different crystalline aggregations of the same compound can have different solubility profiles. Impurities can mask the true solubility, and aggregation in solution can also change the thermodynamic equilibrium. Finally, errors which have been published in the literature data may in fact magnify from publication to publication. [Pg.414]

In some instances, distinct polymorphic forms can be isolated that do not interconvert when suspended in a solvent system, but that also do not exhibit differences in intrinsic dissolution rates. One such example is enalapril maleate, which exists in two bioequivalent polymorphic forms of equal dissolution rate [139], and therefore of equal free energy. When solution calorimetry was used to study the system, it was found that the enthalpy difference between the two forms was very small. The difference in heats of solution of the two polymorphic forms obtained in methanol was found to be 0.51 kcal/mol, while the analogous difference obtained in acetone was 0.69 kcal/mol. These results obtained in two different solvent systems are probably equal to within experimental error. It may be concluded that the small difference in lattice enthalpies (AH) between the two forms is compensated by an almost equal and opposite small difference in the entropy term (-T AS), so that the difference in free energy (AG) is not sufficient to lead to observable differences in either dissolution rate or equilibrium solubility. The bioequivalence of the two polymorphs of enalapril maleate is therefore easily explained thermodynamically. [Pg.369]

Sol id Sol utions. The aqueous concentrations of trace elements in natural waters are frequently much lower than would be expected on the basis of equilibrium solubility calculations or of supply to the water from various sources. It is often assumed that adsorption of the element on mineral surfaces is the cause for the depleted aqueous concentration of the trace element (97). However, Sposito (Chapter 11) shows that the methods commonly used to distinguish between solubility or adsorption controls are conceptually flawed. One of the important problems illustrated in Chapter 11 is the evaluation of the state of saturation of natural waters with respect to solid phases. Generally, the conclusion that a trace element is undersaturated is based on a comparison of ion activity products with known pure solid phases that contain the trace element. If a solid phase is pure, then its activity is equal to one by thermodynamic convention. However, when a trace cation is coprecipitated with another cation, the activity of the solid phase end member containing the trace cation in the coprecipitate wil 1 be less than one. If the aqueous phase is at equil ibrium with the coprecipitate, then the ion activity product wi 1 1 be 1 ess than the sol ubi 1 ity constant of the pure sol id phase containing the trace element. This condition could then lead to the conclusion that a natural water was undersaturated with respect to the pure solid phase and that the aqueous concentration of the trace cation was controlled by adsorption on mineral surfaces. While this might be true, Sposito points out that the ion activity product comparison with the solubility product does not provide any conclusive evidence as to whether an adsorption or coprecipitation process controls the aqueous concentration. [Pg.13]

Once the spontaneous direction of a natural process is determined, we may wish to know how far the process will proceed before reaching equilibrium. For example, we might want to find the maximum yield of an industrial process, the equilibrium solubility of atmospheric carbon dioxide in natural waters, or the equilibrium concentration of a group of metabolites in a cell. Thermodynamic methods provide the mathematical relations required to estimate such quantities. [Pg.4]

Equilibrium solubility This approach is considered a first attempt to characterize the true thermodynamic solubility of the compound. It is used to rank-order compounds and to extract a structure-solubility relationship within the chemical series. In this assay, compounds are usually equilibrated for 24 h before analysis. One can start from powder, but this is a quite labor-intensive step. In most cases one starts from DMSO stock solutions (usually 10 mM) because it is much more efficient from a compound logistics viewpoint. The solvent is then usually removed and the compound is dried before addition of the buffer medium [15, 16]. [Pg.52]

Parameters describing a particular thermodynamic equilibrium system are derived from experimental quantities obtained by a variety of methods, for example, calorimetry, potentio-metry, and solubility studies. In the ideal case, critical examination of well-studied systems reveals high-quality experimental data that lead to a unique set of thermodynamic constants, which are internally consistent, not only formally, but also from a chemical point of view. In the course of our reviews, however, we encountered several cases of conflicting experimental data that resisted any attempt to cast them into a unique set of thermodynamic parameters. The following summarizes the conflicting data and our pragmatic solutions. [Pg.568]


See other pages where Equilibrium solubility thermodynamic is mentioned: [Pg.276]    [Pg.177]    [Pg.170]    [Pg.3313]    [Pg.20]    [Pg.57]    [Pg.81]    [Pg.85]    [Pg.255]    [Pg.451]    [Pg.376]    [Pg.377]    [Pg.377]    [Pg.381]    [Pg.276]    [Pg.177]    [Pg.170]    [Pg.3313]    [Pg.20]    [Pg.57]    [Pg.81]    [Pg.85]    [Pg.255]    [Pg.451]    [Pg.376]    [Pg.377]    [Pg.377]    [Pg.381]    [Pg.134]    [Pg.98]    [Pg.272]    [Pg.744]    [Pg.120]    [Pg.204]    [Pg.604]    [Pg.185]    [Pg.227]    [Pg.364]    [Pg.350]    [Pg.87]    [Pg.1521]    [Pg.25]    [Pg.618]    [Pg.416]    [Pg.416]    [Pg.157]    [Pg.87]    [Pg.90]    [Pg.375]    [Pg.436]    [Pg.645]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Equilibrium thermodynamics

Solubility equilibrium

Solubility thermodynamic

Solubility, thermodynamics

Thermodynamic equilibrium constant solubility product

Thermodynamics Equilibrium/equilibria

© 2024 chempedia.info