Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic energy densities

Table 3.1 shows the thermodynamic energy densities and practical energy densities for several battery systems and fuel cells. Fuel cells potentially offer 5-10 times greater energy densities than rechargeable batteries [4]. [Pg.24]

We shall devote a considerable portion of this chapter to discussing the thermodynamics of mixing according to the Flory-Huggins theory. Other important concepts we discuss in less detail include the cohesive energy density, the Flory-Krigbaum theory, and a brief look at charged polymers. [Pg.506]

Thermodynamic Properties The variation in solvent strength of a supercritical fluid From gaslike to hquidlike values may oe described qualitatively in terms of the density, p, or the solubihty parameter, 6 (square root of the cohesive energy density). It is shown For gaseous, hquid, and SCF CO9 as a function of pressure in Fig. 22-17 according to the rigorous thermodynamic definition ... [Pg.2000]

Main electrode features, which determine the energy density of an electrochemical storage cell, are the volumetric or specific capacity, i.e., the electric charge that electrodes can store per unit volume or weight, respectively, and the electrochemical potential they produce. Considering thermodynamic reasons, lithium, as being the most electropositive (-3.04 V vs. SHE) metal, is exceptional for use as... [Pg.324]

The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, as it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems, while in contrast to Pb and Cd, magnesium is inexpensive, environmentally friendly, and safe to handle. However, the development of Mg-ion batteries has so far been limited by the kinetics of Mg " " diffusion and the lack of suitable electrolytes. Actually, in spite of an expected general similarity between the processes of Li and Mg ion insertion into inorganic host materials, most of the compounds that exhibit fast and reversible Li ion insertion perform very poorly in Mg " ions. Hence, there... [Pg.329]

The tube contains the thermodynamic quantity in an amount M (amount of a substance, thermal energy, etc.), which has a density (concentration, energy density, etc.) p(x) at each point in the tube defined by the relationship... [Pg.93]

Liquid hydrazine, 13 586 Liquid hydrocarbons, in fluidized-bed processes, 20 169-170 Liquid hydrogen delivery of, 13 853 energy density of, 13 839 physical and thermodynamic properties of, 13 762-763t as a rocket fuel, 13 800 storage of, 13 785-786 Liquid hydrogen sulfide, 23 630, 633 Liquid hydrogen tank levitation system, 23 866... [Pg.527]

Phase behavior 1n concentrated aqueous electrolyte systems is of interest for a variety of applications such as separation processes for complex salts, hydrometal 1urgical extraction of metals, interpretation of geological data and development of high energy density batteries. Our interest in developing simple thermodynamic correlations for concentrated salt systems was motivated by the need to interpret the complex solid-liquid equilibria which occur in the extraction of sodium nitrate from complex salt mixtures which occur in Northern Chile (Chilean saltpeter). However, we believe the thermodynamic approach can also be applied to other areas of technological interest. [Pg.718]

The units of q are calories per square centimeter per second and those of the thermal conductivity A are calories per centimeter per second per degree Kelvin. It is not the temperature, an intensive thermodynamic property, that is exchanged, but energy content, an extensive property. In this case, the energy density and the exchange reaction, which show similarity, are written as... [Pg.336]

From the thermodynamic standpoint, the basic components of stars can be considered as photons, ions and electrons. The material particle gas (fermions) and the photon gas (bosons) react differently under compression and expansion. Put n photons and n material particles into a box. Let R be the size of the box (i.e. a characteristic dimension or scale factor). The relation between temperature and size is TR = constant for the photons and TR = constant for the particles. This difference of behaviour is very important in the Big Bang theory, for these equations show quite unmistakably that matter cools more quickly than radiation under the effects of expansion. Hence, a universe whose energy density is dominated by radiation cannot remain this way for long, in fact, no longer than 1 million years. [Pg.130]

In contrast to most of the high energy-density alkali and silver (NO- and NO2-substituted) methanides, the ionic liquids of these methanides with a bulky organic cation are neither heat nor shock sensitive, and hence can be prepared and stored in large scale. Nevertheless, this type of methanide-based ionic liquids can also be considered energetic ionic liquids since the thermodynamically unstable methanide anion is only kinetically... [Pg.699]

Of all the macroscopic quantities in our model, the hydrodynamic density p, flow velocity vector u = (ua), and thermodynamic energy E, have the unique property of being produced by additive invariants of the microscopic motion. The latter, also called sum functions4 and summation invariants,5 occur at an early stage in most treatments. The precise formulation follows. [Pg.40]

The conditions and kinetic equations for phase transformations are treated in Chapters 17 and 20 and involve local changes in free-energy density. The quantification of thermodynamic sources for kinetically active interface motion is approximate for at least two reasons. First, the system is out of equilibrium (the transformations are not reversible). Second, because differences in normal component of mechanical stresses (pressures, in the hydrostatic case) can exist and because the thermal con-... [Pg.285]

We have now collected almost all the pieces required for a first version of COSMO-RS, which starts from the QM/COSMO calculations for the components and ends with thermodynamic properties in the fluid phase. Although some refinements and generalizations to the theory will be added later, it is worthwhile to consider such a basic version of COSMO-RS because it is simpler to describe and to understand than the more elaborate complete version covered in chapter 7. In this model we make an assumption that all relevant interactions of the perfectly screened COSMO molecules can be expressed as local contact energies, and quantified by the local COSMO polarization charge densities a and a of the contacting surfaces. These have electrostatic misfit and hydrogen bond contributions as described in Eqs. (4.31) and (4.32) by a function for the surface-interaction energy density... [Pg.83]

In the framework of irreversible thermodynamics (compare, for example, [31, 32]) the macroscopic variables of a system can be divided into those due to conservation laws (here mass density p, momentum density g = pv with the velocity field v and energy density e) and those reflecting a spontaneously broken continuous symmetry (here the layer displacement u characterizes the broken translational symmetry parallel to the layer normal). For a smectic A liquid crystal the director h of the underlying nematic order is assumed to be parallel to the layer normal p. So far, only in the vicinity of a nematic-smectic A phase transition has a finite angle between h and p been shown to be of physical interest [33],... [Pg.103]


See other pages where Thermodynamic energy densities is mentioned: [Pg.409]    [Pg.866]    [Pg.1099]    [Pg.209]    [Pg.326]    [Pg.383]    [Pg.6]    [Pg.69]    [Pg.316]    [Pg.653]    [Pg.100]    [Pg.56]    [Pg.380]    [Pg.693]    [Pg.7]    [Pg.203]    [Pg.72]    [Pg.257]    [Pg.380]    [Pg.289]    [Pg.344]    [Pg.65]    [Pg.87]    [Pg.72]    [Pg.244]    [Pg.245]    [Pg.223]    [Pg.91]    [Pg.223]    [Pg.281]    [Pg.409]    [Pg.5]    [Pg.327]    [Pg.117]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Density, thermodynamic

Energy densiti

Energy density

Energy thermodynamics

Thermodynamic energy

© 2024 chempedia.info