Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal epoxidation

The autoxidation is probably initiated by a reaction between triplet oxygen and solvent. During thermal epoxidation of the bicyclo[3.1.0]hex-2-ene system, epimerization of one of the isomers occurs by the opening of the cyclopropane ring. Accordingly, one major oxirane isomer is formed (Eq. 46). ... [Pg.37]

Thermal Reactions. Those perfluoroepoxides that contain a CF2 group in the epoxide ring undergo a smooth decomposition at relatively mild, neutral conditions (140—220°C) to give a perfluorocarbonyl compound and difluorocarbene (16,17) (eq. 1). [Pg.303]

A large number of methods have been used to prepare perfluoroepoxides (5). AH of these methods must contend with the great chemical reactivity of the epoxide product, especially with subsequent ionic and thermal reactions which result in the loss of the desired epoxide. [Pg.303]

Perfluoroepoxides have also been prepared by anodic oxidation of fluoroalkenes (39), the low temperature oxidation of fluoroalkenes with potassium permanganate (40), by addition of difluorocarbene to perfluoroacetyl fluoride (41) or hexafluoroacetone (42), epoxidation of fluoroalkenes with oxygen difluoride (43) or peracids (44), the photolysis of substituted l,3-dioxolan-4-ones (45), and the thermal rearrangement of perfluorodioxoles (46). [Pg.304]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

The most important oxirane syntheses are by addition of an oxygen atom to a carbon-carbon double bond, i.e. by the epoxidation of alkenes, and these are considered in Section 5.05.4.2.2. The closing, by nucleophilic attack of oxygen on carbon, of an OCCX moiety is dealt with in Section 5.05.4.2.1 (this approach often uses alkenes as starting materials). Finally, oxirane synthesis from heterocycles is considered in Section 5.05.4.3 one of these methods, thermal rearrangement of 1,4-peroxides (Section 5.05.4.3.2), has assumed some importance in recent years. The synthesis of oxiranes is reviewed in (B-73MI50500) and (64HC(19-1U). [Pg.114]

When cured with room temperature curing system these resins have similar thermal stability to ordinary bis-phenol A type epoxides. However, when they are cured with high-temperature hardeners such as methyl nadic anhydride both thermal degradation stability and heat deflection temperatures are considerably improved. Chemical resistance is also markedly improved. Perhaps the most serious limitation of these materials is their high viscosity. [Pg.762]

In addition, NaOMe, and NaNH2, have also been employed. Applieation of phase-transfer conditions with tetra-n-butylammonium iodide showed marked improvement for the epoxide formation. Furthermore, many complex substituted sulfur ylides have been synthesized and utilized. For instance, stabilized ylide 20 was prepared and treated with a-D-a/lo-pyranoside 19 to furnish a-D-cyclopropanyl-pyranoside 21. Other examples of substituted sulfur ylides include 22-25, among which aminosulfoxonium ylide 25, sometimes known as Johnson s ylide, belongs to another category. The aminosulfoxonium ylides possess the configurational stability and thermal stability not enjoyed by the sulfonium and sulfoxonium ylides, thereby are more suitable for asymmetric synthesis. [Pg.4]

Use of LTMP as base [52] in situ with Me3SiCl allows straightforward access to a variety of synthetically useful a, 3-epoxysilanes 232 at near ambient temperature directly from (enantiopure) terminal epoxides 231 (Scheme 5.55) [81]. This reaction relies on the fact that the hindered lithium amide LTMP is compatible with Me3SiCl under the reaction conditions and that the electrophile trapping of the nonstabilized lithiated epoxide intermediate must be very rapid, since the latter are usually thermally very labile. [Pg.172]

Following Uskokovic s seminal quinine synthesis [40], Jacobsen has very recently reported the first catalytic asymmetric synthesis of quinine and quinidine. The stereospecific construction of the bicyclic framework, introducing the relative and absolute stereochemistry at the Cg- and expositions, was achieved by way of the enantiomerically enriched trans epoxide 87, prepared from olefin 86 by SAD (AD-mix (3) and subsequent one-pot cyclization of the corresponding diol [2b], The key intramolecular SN2 reaction between the Ni- and the Cg-positions was accomplished by removal of the benzyl carbamate with Et2AlCl/thioanisole and subsequent thermal cyclization to give the desired quinudidine skeleton (Scheme 8.22) [41],... [Pg.286]

Epoxidized oils were also used to modify PLA Ali et ah (2009) reported that its use as a plasticizer to improve flexibility. Thermal and scanning electron microscope analysis revealed that epoxidized soybean oil is partially miscible with PLA. Rheological and mechanical properties of PLA/epoxidized soybean oil blends were studied by Xu and Qu (2009) Epoxidized soybean oil exhibited a positive effect on both the elongation at break and melt rheology. Al-Mulla et al. (2010b) also reported that plasticization of PLA (epoxidized palm oil) was carried out via solution casting process using chloroform as a solvent. The results indicated that improved flexibility could be achieved by incorporation of epoxidized palm oil. [Pg.34]

PLA/PCL-OMMT nano-composites were prepared effectively using fatty amides as clay modifier. The nano-composites shows increasing mechanical properties and thermal stability (Hoidy et al, 2010c). New biopolymer nano-composites were prepared by treatment of epoxidized soybean oil and palm oil, respectively plasticized PLA modified MMT with fatty nitrogen compounds. The XRD and TEM results confirmed the production of nanocomposites. The novelty of these studies is use of fatty nitrogen compoimds which reduces the dependence on petroleum-based surfactants (Al-Mulla et al., 2011 Al-Mulla et ah, 2011 Al- Mulla et ah, 2010c). [Pg.36]

Ali, F., Chang, Y., Kang, S.C., Yoon, J.Y. 2009. Thermal, mechanical and rheological properties of poly (lactic add)/epoxidized soybean oil blends. Polymer Bulletin. 62 91-98. [Pg.37]

In order to study the influence of substituents on the spectral behaviour and on the thermal and kinetic stability of silanones, two new organic silanones, dimethylsilicate [144a] and silabenzophenone [144b], have been examined. These were obtained in the vacuum pyrolysis of the corresponding epoxides [145a] and [145b] (Khabashesku et al., 1988c). [Pg.52]

The reaction can also be done thermally. The stereochemistry of the thermal rearrangement of the acetoxy epoxides involves inversion at the carbon to which the acetoxy group migrates,143 and reaction probably proceeds through a cyclic TS. [Pg.1113]

The introduction of organotin residues into an epoxide resin is known to improve the dielectric properties and thermal stability of hardened compositions 71). [Pg.120]


See other pages where Thermal epoxidation is mentioned: [Pg.153]    [Pg.153]    [Pg.311]    [Pg.420]    [Pg.545]    [Pg.506]    [Pg.281]    [Pg.57]    [Pg.58]    [Pg.202]    [Pg.414]    [Pg.42]    [Pg.371]    [Pg.124]    [Pg.189]    [Pg.527]    [Pg.667]    [Pg.8]    [Pg.179]    [Pg.287]    [Pg.17]    [Pg.4]    [Pg.49]    [Pg.187]    [Pg.454]    [Pg.807]    [Pg.547]    [Pg.880]    [Pg.222]    [Pg.211]    [Pg.96]    [Pg.491]    [Pg.966]    [Pg.142]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Epoxides, vinyl thermal rearrangement

© 2024 chempedia.info