Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Ion Source

The ion source. This constitutes a gas-tight region permitting a pressure differential to be created between the source chamber and the ambient vacuum. Electrons emitted from the filament describe a helical orbit, under the influence of small source magnets, providing the maximum chance of collision with sample gas molecules. This in effect produces maximum efficiency of ionisation. [Pg.20]

After ions have been formed by El, they are examined for mass and abundance by the analyzer part of the mass spectrometer, which can incorporate magnetic sectors, electric sectors, qua-drupoles, time-of-flight tubes, and so on. The region in which the ions are first formed is called [Pg.14]

Visual and computer-assisted identification of the structure of a sample analyzed by a mass spectrometer. [Pg.15]

Electron ionization occurs when an electron beam crosses an ion source (box) and interacts with sample molecules that have been vaporized into the source. Where the electrons and sample molecules interact, ions are formed, representing intact sample molecular ions and also fragments produced from them. These molecular and fragment ions compose the mass spectrum, which is a correlation of ion mass and its abundance. El spectra of tens of thousands of substances have been recorded and form the basis of spectral libraries, available either in book form or stored in computer memory banks. [Pg.15]

Simple ion source, showing the housing (block) with electron beam for El. [Pg.15]

Mass spectrum of a carbon compound with (a) and without (b) the C isotopes. [Pg.16]

The particle beam — after linear passage from the evacuation chamber nozzle, through the first and second skimmers, and into the end of the ion source — finally passes through a heated grid immediately before ionization. The heated grid has the effect of breaking up most of the residual small clusters, so residual solvent evaporates and a beam of solute molecules enters the ionization chamber. [Pg.79]


The above Cl reactions will occur if they are exothennic. In order for these reactions to occur with high efficiency, the pressure in the ion source must be raised to the milliTorr level. Also, the reagent species are often introduced in large excess so that they are preferentially ionized by the electron beam. [Pg.1331]

Ions accelerated out of the ion source with keV translational kinetic energies (and m/z selected with the magnetic sector) will arrive in the FFR of the instrument in several microseconds. Ions dissociating on this... [Pg.1335]

To be effective, it is necessary for the ions traversing the instniment to experience several RF cycles. Thus, unlike magnetic sector instmments, the ions fonned in the ion source of a quadnipole mass filter apparatus are accelerated to only a few eV kinetic energy (typically 5-10 eV). The timescale of the experiment is therefore... [Pg.1341]

It is possible to detemiine the equilibrium constant, K, for the bimolecular reaction involving gas-phase ions and neutral molecules in the ion source of a mass spectrometer [18]. These measurements have generally focused on tln-ee properties, proton affinity (or gas-phase basicity) [19, 20], gas-phase acidity [H] and solvation enthalpies (and free energies) [22, 23] ... [Pg.1343]

In the simplest fomi, reflects the time of flight of the ions from the ion source to the detector. This time is proportional to the square root of the mass, i.e., as the masses of the ions increase, they become closer together in flight time. This is a limiting parameter when considering the mass resolution of the TOP instrument. [Pg.1351]

A schematic diagram of a simple TOP instrument is shown in figure B 1.7.17(a). Since the ion source region of any instrument has a finite size, the ions will spend a certain amount of time in the source while they are accelerating. If the... [Pg.1351]

Ions generated in the ion source region of the instrument may have initial velocities isotropically distributed in tliree dimensions (for gaseous samples, this initial velocity is the predicted Maxwell-Boltzmaim distribution at the sample temperature). The time the ions spend in the source will now depend on the direction of their initial velocity. At one extreme, the ions may have a velocity Vq in the direction of the extraction grid. The time spent in the source will be... [Pg.1352]

At the other extreme, ions with initial velocities in the direction opposite to the accelerating potential must first be turned around and brought back to their initial position. From this point their behaviour is the same as described above. The time taken to turn around in the ion source and return to the initial position is given by ... [Pg.1353]

Molecular beam sample introduction (described in section (Bl.7.2)). followed by the orthogonal extraction of ions, results in improved resolution in TOP instruments over eflfrisive sources. The particles in the molecular beam typically have translational temperatures orthogonal to the beam path of only a few Kelvin. Thus, there is less concern with both the initial velocity of the ions once they are generated and with where in the ion source they are fonned (since the particles are originally confined to the beam path). [Pg.1354]

The critical requirements for the ion source are that the ions have a small energy spread, there are no fast neutrals in the beam and the available energy is 1-10 keV. Both noble gas and alkali ion sources are conunon. Por TOP experunents, it is necessary to pulse the ion beam by deflecting it past an aperture. A beam line for such experiments is shown in figure B1.23.5 it is capable of producing ion pulse widths of 15 ns. [Pg.1807]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

Metastable Peaks. If the mass spectrometer has a field-free region between the exit of the ion source and the entrance to the mass analyzer, metastable peaks m may appear as a weak, diffuse (often humped-shape) peak, usually at a nonintegral mass. The one-step decomposition process takes the general form ... [Pg.814]

This chapter should be read in conjunction with Chapter 3, Electron Ionization. In electron ionization (El), a high vacuum (low pressure), typically 10 mbar, is maintained in the ion source so that any molecular ions (M +) formed initially from the interaction of an electron beam and molecules (M) do not collide with any other molecules before being expelled from the ion source into the mass spectrometer analyzer (see Chapters 24 through 27, which deal with ion optics). [Pg.1]

Decomposition (fragmentation) of a proportion of the molecular ions (M +) to form fragment ions (A B+, etc.) occurs mostly in the ion source, and the assembly of ions (M +, A+, etc.) is injected into the mass analyzer. For chemical ionization (Cl), the Initial ionization step is the same as in El, but the subsequent steps are different (Figure 1.1). For Cl, the gas pressure in the ion source is typically increased to 10 mbar (and sometimes even up to atmospheric pressure) by injecting a reagent gas (R in Figure 1.1). [Pg.1]

The ion source, across which an electron beam passes, is filled with methane, the reagent gas. There is a high vacuum around the ion source, so, to maintain a high pressure in the source itself, as many holes as possible must be blocked off or made small. Interaction of methane (CH4) with electrons (e ) gives methane molecular ions (CH4 "), as shown in Figure 1.2a. [Pg.1]

These thin wires are supported on a special carrier that can be inserted into the ion source of the mass spectrometer after first growing the whiskers in a separate apparatus. Although the wires are very fragile, they last for some time and are easily renewed. They are often referred to as emitter electrodes (ion emitters). [Pg.25]

For nonvolatile or thermally labile samples, a solution of the substance to be examined is applied to the emitter electrode by means of a microsyringe outside the ion source. After evaporation of the solvent, the emitter is put into the ion source and the ionizing voltage is applied. By this means, thermally labile substances, such as peptides, sugars, nucleosides, and so on, can be examined easily and provide excellent molecular mass information. Although still FI, this last ionization is referred to specifically as field desorption (FD). A comparison of FI and FD spectra of D-glucose is shown in Figure 5.6. [Pg.26]

Positive ions are obtained from a sample by placing it in contact with the filament, which can be done by directing a gas or vapor over the hot filament but usually the sample is placed directly onto a cold filament, which is then inserted into the instrument and heated. The positive ions are accelerated from the filament by a negative electrode and then passed into a mass analyzer, where their m/z values are measured (Figure 7.1). The use of a suppressor grid in the ion source assembly reduces background ion effects to a very low level. Many types of mass analyzer could be used, but since very high resolutions are normally not needed and the masses involved are quite low, the mass analyzer can be a simple quadrupole. [Pg.45]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

A typical arrangement for producing a particle beam from a stream of liquid, showing (1) the nebulizer, (2) the desolvation chamber, (3) the wall heater, (4) the exit nozzle, (5, 6) skimmers 1, 2, (7) the end of the ion source, (8) the ion source, and (9) the mass analyzer. An optional GC inlet into the ion source is shown. [Pg.78]

The solvents used for liquid chromatography are the commoner ones such as water, acetonitrile, and methanol. For the reasons just stated, it is not possible to put them straight into the ion source without problems arising. On the other hand, the very viscous solvents that qualify as matrix material are of no use in liquid chromatography. Before the low-boiling-point eluant from the LC column is introduced into the ion source, it must be admixed with a high-boiling-point matrix... [Pg.82]

In the ion source, substances are converted into positive or negative ions having masses (m, mj,, m ) and a number (z) of electric charges. From a mass spectrometric viewpoint, the ratio of mass to charge (m,/z, m2/z,, m /z) is important. Generally, z = 1, in which case, m/z = mj,... [Pg.175]

An ion beam mainly comprises normal ions, all having the same kinetic energy gained on acceleration from the ion source, but there are also some ions in the beam with much less than the full kinetic energy these are called metastable ions. [Pg.180]


See other pages where The Ion Source is mentioned: [Pg.1329]    [Pg.1330]    [Pg.1330]    [Pg.1331]    [Pg.1331]    [Pg.1332]    [Pg.1351]    [Pg.1352]    [Pg.2]    [Pg.4]    [Pg.14]    [Pg.14]    [Pg.15]    [Pg.20]    [Pg.24]    [Pg.61]    [Pg.79]    [Pg.86]    [Pg.159]    [Pg.160]    [Pg.164]    [Pg.170]    [Pg.172]    [Pg.175]    [Pg.175]    [Pg.176]    [Pg.177]   


SEARCH



Residence time in the ion source

Residence time in the ion source vacuum chamber

THE SOURCES

The ICP as an ion source

The Inductively Coupled Plasma Ion Source

The Primary Ion Source

The Pulsed Ion Source

Tools of the Trade IV. Interfaces and Ion Sources for Chromatography-Mass Spectrometry

© 2024 chempedia.info