Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature coefficient solubility

Soave m coefficient Solubility parameter at 25°C 0iJ/m ) /2 Temperature n °c Interfacial tension at mN/m Lee Kesier acentric factor... [Pg.419]

The most common method of purification of inorganic species is by recrystallisation, usually from water. However, especially with salts of weak acids or of cations other than the alkaline and alkaline earth metals, care must be taken to minimise the effect of hydrolysis. This can be achieved, for example, by recrystallising acetates in the presence of dilute acetic acid. Nevertheless, there are many inorganic chemicals that are too insoluble or are hydrolysed by water so that no general purification method can be given. It is convenient that many inorganic substances have large temperature coefficients for their solubility in water, but in other cases recrystallisation is still possible by partial solvent evaporation. [Pg.389]

The term solubility thus denotes the extent to which different substances, in whatever state of aggregation, are miscible in each other. The constituent of the resulting solution present in large excess is known as the solvent, the other constituent being the solute. The power of a solvent is usually expressed as the mass of solute that can be dissolved in a given mass of pure solvent at one specified temperature. The solution s temperature coefficient of solubility is another important factor and determines the crystal yield if the coefficient is positive then an increase in temperature will increase solute solubility and so solution saturation. An ideal solution is one in which interactions between solute and solvent molecules are identical with that between the solute molecules and the solvent molecules themselves. A truly ideal solution, however, is unlikely to exist so the concept is only used as a reference condition. [Pg.59]

The Change of Solubility with Temperature. The solubilities of various salts have been measured in aqueous solution at various temperatures. But from these measurements we cannot derive values of L as a function of temperature, until the activity coefficients in the various saturated solutions have been accurately measured. In dilute solutions... [Pg.205]

R is the gas constant Dq and activation energy Eu are constants derived from an Arrhenius plot for diffusion coefficients applying at different temperatures, and solubility coefficient was obtained from a separate permeation test at TiK. Suitable testing using a specially constmcted permeation cell water-cooled at one end provided good validation data. [Pg.636]

Because of solubility changes, the saturated calomel RE has a large temperature coefficient (0.65 mV/K). Its main advantages are ease of preparation (an excess of KCl is added to the solution) and low values of diffusion potential at interfaces with other solutions (see Section 5.2). The potentials of calomel REs can be reproduced to 0.1 mV. These electrodes are very convenient for measurements in neutral solutions (particularly chloride solutions). [Pg.194]

The transition between crystalline and amorphous polymers is characterized by the so-called glass transition temperature, Tg. This important quantity is defined as the temperature above which the polymer chains have acquired sufficient thermal energy for rotational or torsional oscillations to occur about the majority of bonds in the chain. Below 7"g, the polymer chain has a more or less fixed conformation. On heating through the temperature Tg, there is an abrupt change of the coefficient of thermal expansion (or), compressibility, specific heat, diffusion coefficient, solubility of gases, refractive index, and many other properties including the chemical reactivity. [Pg.140]

Dupont et al. [60] studied the same reaction, but used [BMIM][PF6] and [BMIM][BF4] as ionic liquids. A special focus of their investigations was on the influence of H2-pressure on conversion. The Henry coefficient solubility constant was determined by pressure drop experiment in a reactor, which is a known procedure to measure gas solubilities [93]. The values reported by these authors were FC=3.0xl0-3 mol IT1 atm1 for [BMIM][BF4]/H2 and 8.8x10 4 mol L 1 atm-1 for [BMIM][PF6]/H2 at room temperature, which differ significantly from those determined by the 1H-NMR technique (see Table 41.2) [59]. However, their values indicated that molecular hydrogen is almost four times more soluble in [BMIM][BF4] than in [BMIM][PF6] under the same pressure. According to the authors, this is reflected by the values of conversion (ee), which were 73% (93% ee) for [BMIM][BF4] and 26% (81% ee) for [BMIM][PF6] at 50 bar H2 pressure (Table 41.9, entries 2 and 4). [Pg.1401]

A predicted solubility curve for Cimetidine in Ethanol is shown in Figure 18. The affect of temperature on solubility occurs through two mechanisms the ideal solubility effect (Eq. 3), and the temperature dependence of the activity coefficient, y. The second affect is not correlated by the NRTL-SAC model, however it is generally accepted that in most phase equilibria problems the affect of temperature on the activity coefficient is relatively small compared to the affect on ideal solubility. A further degree of caution should be applied when extrapolating in this manner, until experimental data are collected. [Pg.66]

Clever, H.L. Holland, C.J. "Solubility of Argon Gas in Aqueous Alkali Halide Solutions — Temperature Coefficient of the Salting Out Parameter," J. Chem. Eng. Data, 1968, 13, 411-14. [Pg.137]

The procedure for deriving the temperature coefficient of the solubility of a solute in an ideal solution parallels that just used for the pressure coefficient. The condition for maintenance of equilibrium with a change in temperature is still Equation (14.48). [Pg.329]

Since, for a nonionic solute B, we have -RT In % = AsoinG°, it follows that the temperature coefficient of its solubility is... [Pg.78]

For an ionic solute dissociating into v ions, the temperature coefficient is 1/v times the right-hand side of Eq. (2.60). Again, it is assumed that the solubility is sufficiently low for the mean ionic activity coefficient to be effectively equal to unity and independent of the temperature. When this premise is not met, then corrections for the heat of dilution from the value of the solubility to infinite dilution must be added to Asoi //°b in Eq. (2.60). [Pg.78]

Gas-liquid relationships, in the geochemical sense, should be considered liquid-solid-gas interactions in the subsurface. The subsurface gas phase is composed of a mixture of gases with various properties, usually found in the free pore spaces of the solid phase. Processes involved in the gas-liquid and gas-solid interface interactions are controlled by factors such as vapor pressure-volatilization, adsorption, solubility, pressure, and temperature. The solubility of a pure gas in a closed system containing water reaches an equilibrium concentration at a constant pressure and temperature. A gas-liquid equilibrium may be described by a partition coefficient, relative volatilization and Henry s law. [Pg.144]

Considering the rather complicated processes that take place during dissolution it is not surprising that some systems show peculiar behavior. For example, while solubility generally increases with temperature, there are also polymers that exhibit a negative temperature coefficient of solubility in certain solvents. Thus, poly(ethylene oxide), poly(N-isopropylacrylamide), or poly(methyl vinyl ether) dissolve in water at room temperature but precipitate upon warming. This behavior is found for all polymer-solvent systems showing a lower critical solution temperature (LCST). It can be explained by the temperature-dependent... [Pg.16]

Crystallization is often used as a method of product isolation. Crystallization of the reaction product may be induced if, to the reaction medium, in which it is well soluble, a cosolvent is added in which the product is insoluble. Because for the latter purification method the solubility should be high at high temperatures but much lower at low temperatures, the temperature coefficient of the solubility becomes an important criterion for the employment of a solvent. A further guide is the fact that substances tend to dissolve in solvents with similar polarities, so that a solvent and cosolvent for the recrystallization of a given product can be selected according to the polarities. [Pg.30]

I2 (aq.). From measurements of the temperature coefficient of solubility, Hartley and Campbell1 computed S = — 5.0. Sammet s1 data yield calculated value of —6.37 evidently being in error. [Pg.113]

AgCNS (aq.). Kirschner s1 data on the temperature coefficient of the solubility yield —21.3 for the heat of solution. [Pg.295]

With nonionic PEO emulsifiers, intermolecular interactions vary with temperature and types of metal ions and solvents. At low temperatures, nonionic emulsifiers are hydrophilic and form normal micelles. At higher temperatures they are lipophilic and form reverse micelles. A weak interaction with metal ions favors the stability of associates against moisture. On the other hand, a strong interaction may lead to a completely amorphous system. Ethanol as a co-solvent is a moderate solvent for PEO at low temperatures, but its power improves as the temperature is raised [34]. This means that solutions of the PEO copolymers in water and ethanol have opposing temperature coefficients of solubility negative for water and positive for ethanol. [Pg.20]


See other pages where Temperature coefficient solubility is mentioned: [Pg.395]    [Pg.474]    [Pg.823]    [Pg.241]    [Pg.389]    [Pg.118]    [Pg.458]    [Pg.887]    [Pg.111]    [Pg.241]    [Pg.306]    [Pg.82]    [Pg.431]    [Pg.431]    [Pg.395]    [Pg.406]    [Pg.175]    [Pg.105]    [Pg.79]    [Pg.181]    [Pg.204]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Solubility temperature

Temperature coefficient

Temperature soluble

© 2024 chempedia.info