Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tartrate, determination

Derivatives. The precise identification of a compound normally depends upon the preparation of a derivative and the determination of physical constants such as m.p. in the case of a solid. Many simple compounds can, however, be identified with a fair degree of certainty by intelligently-selected qualitative tests alone, e.g., formates, oxalates, succinates, lactates, tartrates, chloral hydrate. [Pg.402]

Description of Method. Salt substitutes, which are used in place of table salt for individuals on a low-sodium diet, contain KCI. Depending on the brand, fumaric acid, calcium hydrogen phosphate, or potassium tartrate also may be present. Typically, the concentration of sodium in a salt substitute is about 100 ppm. The concentration of sodium is easily determined by flame atomic emission. Because it is difficult to match the matrix of the standards to that of the sample, the analysis is accomplished by the method of standard additions. [Pg.439]

For the separate determination of the four principal components in the total alkaloids, the method in general use is based on the isolation of quinine and cinchonidine as d-tartrates, of cinchonine as the base in virtue of its sparing solubility in ether, and of quinidine as the hydriodide. Types of this method have been described by Chick, and special modifications designed for use in the analysis of totaquina are given in the British Pharmacopoeia 1932 and in a special report by the Malaria Commission of the League of Nations. Goodson and Henry have critically examined this process and shown that, with care, it gives satisfactory... [Pg.420]

A great deal of kinetie information on the AE reaetion has been obtained. The rate of reaetion is first order in allylie aleohol, Ti(0-iPr)2(tartrate), and TBHP. In addition, the rate is inversely-square dependent on isopropoxide. This refleets the required replaeement of two isopropoxide ligands on Ti(0-iPr)2(tartrate) with TBHP and the allylie aleohol. The rate-determining step is oxygen transfer from the peroxide to the olefin. [Pg.52]

Table 5-1. Enantioselectivities determined for several drugs. All experiments were performed at room temperature, except those marked with, which were performed at 4 °C. In some cases a lipophilic anion was used to facilitate the solubilization of the drug in the organic phases (PFj = hexafluorophosphate BPh = tetraphenyl borate). DHT = dihexyl tartrate DBT = dibenzoyl tartrate PLA = poly (lactic acid). ... Table 5-1. Enantioselectivities determined for several drugs. All experiments were performed at room temperature, except those marked with, which were performed at 4 °C. In some cases a lipophilic anion was used to facilitate the solubilization of the drug in the organic phases (PFj = hexafluorophosphate BPh = tetraphenyl borate). DHT = dihexyl tartrate DBT = dibenzoyl tartrate PLA = poly (lactic acid). ...
A. Direct titration. The solution containing the metal ion to be determined is buffered to the desired pH (e.g. to PH = 10 with NH4-aq. NH3) and titrated directly with the standard EDTA solution. It may be necessary to prevent precipitation of the hydroxide of the metal (or a basic salt) by the addition of some auxiliary complexing agent, such as tartrate or citrate or triethanolamine. At the equivalence point the magnitude of the concentration of the metal ion being determined decreases abruptly. This is generally determined by the change in colour of a metal indicator or by amperometric, spectrophotometric, or potentiometric methods. [Pg.311]

A similar reaction occurs with antimony(III) compounds. The determination of antimony(III) in the presence of tartrate is not very satisfactory with an immiscible solvent to assist in indicating the end point amaranth, however, gives excellent results. [Pg.402]

The introduction of reversible redox indicators for the determination of arsenic(III) and antimony(III) has considerably simplified the procedure those at present available include 1-naphthoflavone, and p-ethoxychrysoidine. The addition of a little tartaric acid or potassium sodium tartrate is recommended when antimony(III) is titrated with bromate in the presence of the reversible... [Pg.405]

Antimony pyrogallate, Sb(C6H503). Antimony(III) salts in the presence of tartrate ions may be quantitatively predpitated with a large excess of aqueous pyrogallol as the dense antimony pyrogallate. The method fadlitates a simple separation from arsenic the latter element may be determined in the filtrate from the predpitation of antimony by direct treatment with hydrogen sulphide. [Pg.447]

In a similar determination described by Lingane and Jones,11 an alloy containing copper, bismuth, lead, and tin is dissolved in hydrochloric acid as described above, and then 100 mL of sodium tartrate solution (0.1 M) is added, followed by sufficient sodium hydroxide solution (5M) to adjust the pH to 5.0. After the addition of hydrazinium chloride (4 g), the solution is warmed to 70 °C and then electrolysed. Copper is deposited at —0.3 volt, and then sequentially, bismuth at —0.4 volt, and lead at —0.6 volt all cathode potentials quoted are vs the S.C.E. After deposition of the lead, the solution is acidified with hydrochloric acid and the tin then deposited at a cathode potential of — 0.65 volt vs the S.C.E. [Pg.518]

Fluoride, in the absence of interfering anions (including phosphate, molybdate, citrate, and tartrate) and interfering cations (including cadmium, tin, strontium, iron, and particularly zirconium, cobalt, lead, nickel, zinc, copper, and aluminium), may be determined with thorium chloranilate in aqueous 2-methoxyethanol at pH 4.5 the absorbance is measured at 540 nm or, for small concentrations 0-2.0 mg L 1 at 330 nm. [Pg.701]

Discussion. Cadmium may be precipitated quantitatively in alkaline solution in the presence of tartrate by 2-(2-hydroxyphenyl)benzoxazole. The complex dissolves readily in glacial acetic acid, giving a solution with an orange tint and a bright blue fluorescence in ultraviolet light. The acetic (ethanoic) acid solution is used as a basis for the fluorimetric determination of cadmium.28... [Pg.737]

Solutions of 7.5 g (40 mmol) of triisopropyl borate in 10 mL of dry diethyl ether and 40 mmol of 0.87 M allylmagnesium bromide in diethyl ether arc added dropwisc separately to 10 mL of diethyl ether at — 78 °C. This mixture is stirred for 0.5 h at —78 JC, then is allowed to warm to r.t. and stirred for 3 h. The slurry is recooled to 0 C. and then 40 mmol or 1 N aq hydrochloric acid saturated with NaCl are added dropwise over 15 min. The mixture is warmed to r.t., and stirring is continued for 10 min. The organic layer is separated and directly treated with 9.4 g (40 mmol) of diisopropyl (/ ,/ )-tartrate (DIPT). The aqueous phase is extracted with three 50-mL portions of diethyl elher/CH.CI, 5 1. The combined organic layers are dried over anhyd MgS04 for 2.5 h, then filtered under argon. The filtrate is concentrated in vacuo and toluene is added to give a final volume of 50 mL. The concentration of reactive allylboronate is determined by treatment of a 1 mL aliquot of this solution with a known excess of cyclohexanecarboxaldehyde. This... [Pg.261]

The stereochemistry of the first step was ascertained by an X-ray analysis [8] of an isolated oxazaphospholidine 3 (R = Ph). The overall sequence from oxi-rane to aziridine takes place with an excellent retention of chiral integrity. As the stereochemistry of the oxirane esters is determined by the chiral inductor during the Sharpless epoxidation, both enantiomers of aziridine esters can be readily obtained by choosing the desired antipodal tartrate inductor during the epoxidation reaction. It is relevant to note that the required starting allylic alcohols are conveniently prepared by chain elongation of propargyl alcohol as a C3 synthon followed by an appropriate reduction of the triple bond, e. g., with lithium aluminum hydride [6b]. [Pg.95]

The enantioselectivity is consistent with cyclic TSs. The key element determining the orientation of the aldehyde within the TS is the interaction of the aldehyde group with the tartrate ligand. [Pg.800]

Tscheme, R. J. and Umagat, H., Determination of isophenindamine in phen-indamine tartrate using an argentated high-performance liquid chromatographic mobile phase, /. Pharm. Sci., 69, 342, 1980. [Pg.196]

According to El-Mashri et al.,190 the A106 A104 ratio determines the hydration capacity of anodic oxides. Tetrahedral sites are hydrated easily to form a boehmite-like structure, which is known to be composed of double layers of Al-centered octahedra, weakly linked by water molecules to other layers.184 As the oxide formed in H3P04 contains about 70% tetrahedral aluminum bonds, its hydration ability should be higher than that of the oxide formed in tartrate solution. However, this has not been found in practice, which is interpreted by El-Mashri et al. as being due to some reduction of A104 by incorporated phosphate species. [Pg.459]

The luminol reaction has also been used for the CL determination of organic substances such as penicillins [32] and tartrate ion [30] in pharmaceutical preparations by their inhibitory effect on the luminol-iodine and luminol-periodate-manganese(II)-TEA system, respectively. As can be seen from Table 1, the results were quite satisfactory. In the indirect determination of penicillins by their inhibitory effect on the luminol-iodine system, the stopped-flow technique improves the accuracy and precision of the analytical information obtained, and also the sample throughput [32], Thus, in only 2-3 s one can obtain the whole CL signal-versus-time profile and calculate the three measured parameters formation and... [Pg.186]


See other pages where Tartrate, determination is mentioned: [Pg.93]    [Pg.93]    [Pg.729]    [Pg.583]    [Pg.494]    [Pg.93]    [Pg.93]    [Pg.729]    [Pg.583]    [Pg.494]    [Pg.249]    [Pg.201]    [Pg.68]    [Pg.396]    [Pg.354]    [Pg.51]    [Pg.52]    [Pg.299]    [Pg.438]    [Pg.694]    [Pg.262]    [Pg.264]    [Pg.139]    [Pg.225]    [Pg.131]    [Pg.431]    [Pg.441]    [Pg.801]    [Pg.1085]    [Pg.257]    [Pg.261]    [Pg.308]    [Pg.458]    [Pg.209]    [Pg.192]    [Pg.434]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.213 ]




SEARCH



Tartrate

© 2024 chempedia.info