Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sweeping, injection

The recovery factor (RF) is in the range 30-70%, depending on the strength of the natural aquifer, or the efficiency with which the injected water sweeps the oil. The high RF is an incentive for water injection into reservoirs which lack natural water drive. [Pg.192]

Steam is injected into a reservoir to reduce oil viscosity and make it flow more easily. This technique is used in reservoirs containing high viscosity crudes where conventional methods only yield very low recoveries. Steam can be injected in a cyclic process in which the same well is used for injection and production, and the steam is allowed to soak prior to back production (sometimes known as Huff and Puff). Alternatively steam is injected to create a steam flood, sweeping oil from injectors to producers much as in a conventional waterflood. In such cases it is still found beneficial to increase the residence (or relaxation) time of the steam to heat treat a greater volume of reservoir. [Pg.357]

The bipolar junction transistor (BIT) consists of tliree layers doped n-p-n or p-n-p tliat constitute tire emitter, base and collector, respectively. This stmcture can be considered as two back-to-back p-n junctions. Under nonnal operation, tire emitter-base junction is forward biased to inject minority carriers into tire base region. For example, tire n type emitter injects electrons into a p type base. The electrons in tire base, now minority carriers, diffuse tlirough tire base layer. The base-collector junction is reverse biased and its electric field sweeps tire carriers diffusing tlirough tlie base into tlie collector. The BIT operates by transport of minority carriers, but botli electrons and holes contribute to tlie overall current. [Pg.2891]

There are two principal mechanisms of enhanced oil recovery increasing volumetric sweep efficiency of the injected fluid and increasing oil displacement efficiency by the injected fluid. In both, chemicals are used to modify the properties of an injected fluid whether water, steam, a miscible gas such as CO2 or natural gas, or an immiscible gas, usually nitrogen. Poor reservoir volumetric sweep efficiency is the greatest obstacle to increasing oil recovery (9). [Pg.188]

Polymer Flooding. Even in the absence of fractures and thief 2ones, the volumetric sweep efficiency of injected fluids can be quite low. The poor volumetric sweep efficiency exhibited in waterfloods is related to the mobiUty ratio, Af, the mobiUty of the injected water in the highly flooded (low oil saturation) rock, divided by the mobiUty of the oil in oil-bearing portions of the reservoir, (72,73). The mobiUty ratio is related to the rock permeabihty to oil, and injected water, and to the viscosity of these fluids by the following equation ... [Pg.191]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

Gravity override of low density steam leads to poor volumetric sweep efficiency and low oil recovery in steam floods. Nonchemical methods of improving steam volumetric sweep efficiency include completing the injection well so steam is only injected in the lower part of the oil-bearing zone (181), alternating the injection of water and steam (182), and horizontal steam injection wells (183,184). Surfactants frequently are used as steam mobihty control agents to reduce gravity override (185). Field-proven surfactants include alpha-olefin sulfonates (AOS), alkyltoluene sulfonates, and neutralized... [Pg.193]

Surfactants evaluated in surfactant-enhanced alkaline flooding include internal olefin sulfonates (259,261), linear alkyl xylene sulfonates (262), petroleum sulfonates (262), alcohol ethoxysulfates (258,261,263), and alcohol ethoxylates/anionic surfactants (257). Water-thickening polymers, either xanthan or polyacrylamide, can reduce injected fluid mobiHty in alkaline flooding (264) and surfactant-enhanced alkaline flooding (259,263). The combined use of alkah, surfactant, and water-thickening polymer has been termed the alkaH—surfactant—polymer (ASP) process. Cross-linked polymers have been used to increase volumetric sweep efficiency of surfactant—polymer—alkaline agent formulations (265). [Pg.194]

Microbial-enhanced oil recovery involves injection of carefully chosen microbes. Subsequent injection of a nutrient is sometimes employed to promote bacterial growth. Molasses is the nutrient of choice owing to its low (ca 100/t) cost. The main nutrient source for the microbes is often the cmde oil in the reservoir. A rapidly growing microbe population can reduce the permeabiHty of thief zones improving volumetric sweep efficiency. Microbes, particularly species of Clostridium and Bacillus, have also been used to produce surfactants, alcohols, solvents, and gases in situ (270). These chemicals improve waterflood oil displacement efficiency (see also Bioremediation (Supplement)). [Pg.194]

When an oil reservoir is subjected to steam injection, steam tends to move up in the formation, whereas condensate and oil tend to move down due to the density difference between the fluids. Gradually, a steam override condition develops, in which the injected steam sweeps the upper portion of the formation but leaves the lower portion untouched. Injected steam will tend to follow the path of least resistance from the injection well... [Pg.210]

The amount of oil recovery promoted by an injected fluid is related to its ability to displace the oil it contacts in the reservoir, termed the oil displacement efficiency (ODE), and to the relative amount of the reservoir invaded by the injected fluid, termed the volumetric sweep efficiency (VSE). Total oil recovery may be expressed as ... [Pg.30]

Volumetric sweep efficiency is determined by the permeability and wettability distribution in the reservoir and by the properties of injected fluids. Waterflooding characteristically exhibits poor volumetric sweep efficiency. The more expensive the injection fluid, the more important it is to have a high volumetric sweep efficiency so that the injected fluid contacts and thus mobilizes a larger volume of oil. High permeability streaks or layers (thief zones) and natural or induced rock fractures can channel the injected fluid through a small portion of the reservoir resulting in a low volumetric sweep efficiency. [Pg.30]

Both nonionic and anionic surfactants have been evaluated in this application (488,489) including internal olefin sulfonates (487, 490), linear alkylxylene sulfonates (490), petroleum sulfonates (491), alcohol ethoxysulfates (487,489,492). Ethoxylated alcohols have been added to some anionic surfactant formulations to improve interfacial properties (486). The use of water thickening polymers, either xanthan or polyacrylamide to reduce injected fluid mobility mobility has been proposed for both alkaline flooding (493) and surfactant enhanced alkaline flooding (492). Crosslinked polymers have been used to increase volumetric sweep efficiency of surfactant - polymer - alkaline agent formulations (493). [Pg.44]

Miscible water-alternating-gas (WAG) process. Injection alternates between gas (usually natural gas or C02) and water the miscible gas and oil form one phase. The WAG cycles improve sweep efficiency by increasing viscosity of the combined flood front (Figure 12). [Pg.99]


See other pages where Sweeping, injection is mentioned: [Pg.352]    [Pg.359]    [Pg.598]    [Pg.143]    [Pg.432]    [Pg.432]    [Pg.542]    [Pg.207]    [Pg.188]    [Pg.190]    [Pg.190]    [Pg.191]    [Pg.193]    [Pg.194]    [Pg.195]    [Pg.192]    [Pg.250]    [Pg.157]    [Pg.265]    [Pg.52]    [Pg.95]    [Pg.196]    [Pg.321]    [Pg.129]    [Pg.380]    [Pg.643]    [Pg.737]    [Pg.38]    [Pg.43]    [Pg.45]    [Pg.445]    [Pg.576]    [Pg.577]    [Pg.652]   
See also in sourсe #XX -- [ Pg.693 ]




SEARCH



Cationic selective exhaustive injection-sweeping

Sweep

© 2024 chempedia.info