Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Suspension polymer characterization

Suspension Polymers. Methacrylate suspension polymers are characterized by thek composition and particle-size distribution. Screen analysis is the most common method for determining particle size. Melt-flow characteristics under various conditions of heat and pressure are important for polymers intended for extmsion or injection molding appHcations. Suspension polymers prepared as ion-exchange resins are characterized by thek ion-exchange capacity, density (apparent and wet), solvent sweUing, moisture holding capacity, porosity, and salt-spHtting characteristics (105). [Pg.270]

Elongational behaviour under steady and transient conditions can also be characterized, and more information is provided in Chapter 3. This short introduction to rheology should provide enough background for further interpretation of polymer-dynamic theories of suspensions, polymer solutions and polymer melts. [Pg.171]

The behavior of colloidal suspensions is controlled by iaterparticle forces, the range of which rarely extends more than a particle diameter (see Colloids). Consequentiy suspensions tend to behave like viscous Hquids except at very high particle concentrations when the particles are forced iato close proximity. Because many coating solutions consist of complex mixtures of polymer and coUoidal material, a thorough characterization of the bulk rheology requires a number of different measurements. [Pg.304]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

Poly(methyl 3-(l-oxypyridinyl)siloxane) was synthesized and shown to have catalytic activity in transacylation reactions of carboxylic and phosphoric acid derivatives. 3-(Methyldichlorosilyl)pyridine (1) was made by metallation of 3-bromopyridine with n-BuLi followed by reaction with excess MeSiCl3. 1 was hydrolyzed in aqueous ammonia to give hydroxyl terminated poly(methyl 3-pyridinylsiloxane) (2) which was end-blocked to polymer 3 with (Me3Si)2NH and Me3SiCl. Polymer 3 was N-oxidized with m-ClC6H4C03H to give 4. Species 1-4 were characterized by IR and H NMR spectra. MS of 1 and thermal analysis (DSC and TGA) of 2-4 are discussed. 3-(Trimethylsilyl)-pyridine 1-oxide (6), l,3-dimethyl-l,3-bis-3-(l-oxypyridinyl) disiloxane (7) and 4 were effective catalysts for conversion of benzoyl chloride to benzoic anhydride in CH2Cl2/aqueous NaHCC>3 suspensions and for hydrolysis of diphenyl phosphorochloridate in aqueous NaHCC>3. The latter had a ti/2 of less than 10 min at 23°C. [Pg.199]

Any fundamental study of the rheology of concentrated suspensions necessitates the use of simple systems of well-defined geometry and where the surface characteristics of the particles are well established. For that purpose well-characterized polymer particles of narrow size distribution are used in aqueous or non-aqueous systems. For interpretation of the rheological results, the inter-particle pair-potential must be well-defined and theories must be available for its calculation. The simplest system to consider is that where the pair potential may be represented by a hard sphere model. This, for example, is the case for polystyrene latex dispersions in organic solvents such as benzyl alcohol or cresol, whereby electrostatic interactions are well screened (1). Concentrated dispersions in non-polar media in which the particles are stabilized by a "built-in" stabilizer layer, may also be used, since the pair-potential can be represented by a hard-sphere interaction, where the hard sphere radius is given by the particles radius plus the adsorbed layer thickness. Systems of this type have been recently studied by Croucher and coworkers. (10,11) and Strivens (12). [Pg.412]

Water insoluble monomers such as vinyl chloride may be polymerized as suspended droplets (10-1000 nm in diameter) in a process called suspension (pearl) polymerizations. Coalescence of droplets is prevented by the use of small amounts of water-soluble polymers, such as PVA. The suspension process is characterized by good heat control and ease of removal of the discrete polymer particles. [Pg.187]

Most data about the Ludwig-Soret effect of polymers in solution have been obtained from thermal field-flow fractionation (TFFF), developed by Giddings and coworkers [17,18]. TFFF is one member of the family of field-flow fractionation techniques, which are all characterized by a laminar flow of the polymer solution or colloidal suspension within a relatively narrow channel. An external field, which may be gravitation, cross-flow, or temperature as in TFFF, is applied... [Pg.4]

An additional porous polymer is poly(glycidyl methacrylate-ethyleneglycol dimethacrylate) (see Figure 2.46) that is synthesized by suspension polymerization in the presence of an inert porogen in the polymerization reaction, obtaining a material with an internal macroporous morphology characterized by an interconnected pore network, which permeates the extensively cross-linked polymer matrix [209],... [Pg.95]

Another characteristic of the condensed tannins was usually observed during leather tannage with these materials. Aqueous suspensions of tannin that were acidic from the tanning process gradually precipitated insoluble materials known as tanner s reds or phlobaphenes. These substances, derived from the tannin, were no longer soluble in water, but they could be dissolved in polar solvents such as ethanol or acetone or in aqueous base. Since most species of bark contain an extractive fraction that physically resembles the tanner s reds, they are referred to as phlobaphenes in the literature. Very little characterization work has been done on this fraction, and there is substantial reason to believe that the bark phlobaphene fraction contains a variety of water-insoluble polymers, some of them totally unrelated to the condensed tannin family. [Pg.157]

Th-FFF can be applied to almost all kinds of synthetic polymers, like polystyrene, polyolefins, polybutadiene, poly(methyl methacrylate), polyisoprene, polysulfone, polycarbonate, nitrocelluloses and even block copolymers [114,194,220]. For some polymers like polyolefins, with a small thermal diffusion coefficient, high temperature Th-FFF has to be applied [221]. Similarly, hydrophilic polymers in water are rarely characterized by Th-FFF, due to the lack of a significant thermal diffusion (exceptions so far poly(ethylene oxide), poly(vi-nyl pyrrolidone) and poly(styrene sulfonate)) [222]. Thus Th-FFF has evolved as a technique for separating synthetic polymers in organic solvents [194]. More recently, both aqueous and non-aqueous particle suspensions, along with mixtures of polymers and particles, have been shown to be separable [215]. [Pg.116]


See other pages where Suspension polymer characterization is mentioned: [Pg.81]    [Pg.81]    [Pg.169]    [Pg.422]    [Pg.390]    [Pg.288]    [Pg.394]    [Pg.368]    [Pg.81]    [Pg.183]    [Pg.659]    [Pg.237]    [Pg.4644]    [Pg.341]    [Pg.548]    [Pg.276]    [Pg.437]    [Pg.272]    [Pg.26]    [Pg.75]    [Pg.346]    [Pg.456]    [Pg.90]    [Pg.357]    [Pg.91]    [Pg.283]    [Pg.189]    [Pg.261]    [Pg.127]    [Pg.206]    [Pg.117]    [Pg.437]    [Pg.551]    [Pg.97]    [Pg.10]    [Pg.186]    [Pg.24]    [Pg.160]    [Pg.665]   
See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Polymer characterization

Polymer suspension

Suspension polymerization polymer characterization

Suspensions characterization

© 2024 chempedia.info