Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant solutions micelles

Small micelles in dilute solution close to the CMC are generally beheved to be spherical. Under other conditions, micellar materials can assume stmctures such as oblate and prolate spheroids, vesicles (double layers), rods, and lamellae (36,37). AH of these stmctures have been demonstrated under certain conditions, and a single surfactant can assume a number of stmctures, depending on surfactant, salt concentration, and temperature. In mixed surfactant solutions, micelles of each species may coexist, but usually mixed micelles are formed. Anionic-nonionic mixtures are of technical importance and their properties have been studied (38,39). [Pg.237]

Surfactant molecules are in dynamic equilibrium among three possible states (monomers adsorbed at the interface of the aqueous solution with a non-polar phase, monomers molecularly dispersed in the solution, and micellar aggregates formed when the CMC is reached). From various theoretical considerations, as well as experimental results, it can be said that micelles are dynamic structures whose stability is in the range of milliseconds to seconds.2223 Thus, in an aqueous surfactant solution, micelles break and reform at a fairly rapid rate, in the range of milliseconds.24 26... [Pg.147]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The Diels-Alder reaction provides us with a tool to probe its local reaction environment in the form of its endo-exo product ratio. Actually, even a solvent polarity parameter has been based on endo-exo ratios of Diels-Alder reactions of methyl acrylate with cyclopentadiene (see also section 1.2.3). Analogously we have determined the endo-exo ratio of the reaction between 5.1c and 5.2 in surfactant solution and in a mimber of different organic and acpieous media. These ratios are obtained from the H-NMR of the product mixtures, as has been described in Chapter 2. The results are summarised in Table 5.3, and clearly point towards a water-like environment for the Diels-Alder reaction in the presence of micelles, which is in line with literature observations. [Pg.137]

In all surfactant solutions 5.2 can be expected to prefer the nonpolar micellar environment over the aqueous phase. Consequently, those surfactant/dienophile combinations where the dienophile resides primarily in the aqueous phase show inhibition. This is the case for 5.If and S.lg in C12E7 solution and for S.lg in CTAB solution. On the other hand, when diene, dienophile and copper ion simultaneously bind to the micelle, as is the case for Cu(DS)2 solutions with all three dienophiles, efficient micellar catalysis is observed. An intermediate situation exists for 5.1c in CTAB or C12E7 solutions and particularly for 5.If in CTAB solution. Now the dienophile binds to the micelle and is slid elded from the copper ions that apparently prefer the aqueous phase. Tliis results in an overall retardation, despite the possible locally increased concentration of 5.2 in the micelle. [Pg.142]

Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ... Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ...
Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

Mass-action model of surfactant micelle formation was used for development of the conceptual retention model in micellar liquid chromatography. The retention model is based upon the analysis of changing of the sorbat microenvironment in going from mobile phase (micellar surfactant solution, containing organic solvent-modifier) to stationary phase (the surfactant covered surface of the alkyl bonded silica gel) according to equation ... [Pg.81]

The method for creating acceptor sink condition discussed so far is based on the use of a surfactant solution. In such solutions, anionic micelles act to accelerate the transport of lipophilic molecules. We also explored the use of other sink-forming reagents, including serum proteins and uncharged cyclodextrins. Table 7.20 compares the sink effect of 100 mM (5-cyclodextrin added to the pH 7.4 buffer in the acceptor wells to that of the anionic surfactant. Cyclodextrin creates a weaker sink for the cationic bases, compared to the anionic surfactant. The electrostatic binding force between charged lipophilic bases and the anionic surfactant micelles... [Pg.228]

The basic mechanism for surfactants to enhance solubility and dissolution is the ability of surface-active molecules to aggregate and form micelles [35], While the mathematical models used to describe surfactant-enhanced dissolution may differ, they all incorporate micellar transport. The basic assumption underlying micelle-facilitated transport is that no enhanced dissolution takes place below the critical micelle concentration of the surfactant solution. This assumption is debatable, since surfactant molecules below the critical micelle concentration may improve the wetting of solids by reducing the surface energy. [Pg.140]

A method used to describe the enhanced dissolution rate following micelle-facilitated dissolution is to compare the dissolution of the drug in the surfactant solution to that of the dissolution rate in water this is often termed the reaction factor method. The reaction factor, ( vM, which is the total flux of the micelle-solubilized solute plus the free solute divided by the flux of the free solute, is given by... [Pg.143]

In emulsion polymerization, a solution of monomer in one solvent forms droplets, suspended in a second, immiscible solvent. We often employ surfactants to stabilize the droplets through the formation of micelles containing pure monomer or a monomer in solution. Micelles assemble when amphiphilic surfactant molecules (containing both a hydrophobic and hydrophilic end) organize at a phase boundary so that their hydrophilic portion interacts with the hydrophilic component of the emulsion, while their hydrophobic part interacts with the hydrophobic portion of the emulsion. Figure 2.14 illustrates a micellized emulsion structure. To start the polymerization reaction, a phase-specific initiator or catalyst diffuses into the core of the droplets, starting the polymerization. [Pg.55]


See other pages where Surfactant solutions micelles is mentioned: [Pg.342]    [Pg.343]    [Pg.345]    [Pg.347]    [Pg.465]    [Pg.467]    [Pg.2060]    [Pg.2401]    [Pg.2402]    [Pg.2404]    [Pg.2406]    [Pg.319]    [Pg.8]    [Pg.342]    [Pg.343]    [Pg.345]    [Pg.347]    [Pg.465]    [Pg.467]    [Pg.2060]    [Pg.2401]    [Pg.2402]    [Pg.2404]    [Pg.2406]    [Pg.319]    [Pg.8]    [Pg.242]    [Pg.415]    [Pg.480]    [Pg.2572]    [Pg.2601]    [Pg.139]    [Pg.156]    [Pg.151]    [Pg.232]    [Pg.237]    [Pg.413]    [Pg.65]    [Pg.65]    [Pg.461]    [Pg.689]    [Pg.690]    [Pg.690]    [Pg.691]    [Pg.225]    [Pg.454]    [Pg.169]    [Pg.411]    [Pg.722]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Critical micelle concentration pure surfactant solution

Critical micelle concentration surfactant solutions

From Giant Micelles to Fluid Membranes Polymorphism in Dilute Solutions of Surfactant Molecules

Micellization surfactants

Surfactant solutions

Surfactant solutions micellization processes

Worm-Like Micelles in Diluted Mixed Surfactant Solutions Formation and Rheological Behavior

Worm-Like Micelles in a Binary Solution of Nonionic Surfactant

© 2024 chempedia.info