Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant solutions critical micelle concentrations

R. Wagner, Y. Wu, L. Richter, J. Reiners, J. Weissmuller, A. De Montigny, Appl. Organometal. Chem., 1999, 13(1), 21-28. SUicon-modified carbohydrate surfactants. VIII. equilibrium wetting of perfluorinated solid surfaces by solutions of surfactants above and below the critical micelle concentration-surfactant distribution between liquid-vapor and solid-Uquid interfaces. ... [Pg.202]

In electrochemical studies, surfactant will nearly always be adsorbed to the electrode-solution interface . At extreme positive or negative applied potentials and surfactant concentrations well above the critical micelle concentration, surfactant molecules may be organized on the electrode surface in thick aggregates that profoundly affect the electrochemistry . ... [Pg.566]

The concentration at which micellization commences is called the critical micelle concentration, erne. Any experimental teclmique sensitive to a solution property modified by micellization or sensitive to some probe (molecule or ion) property modified by micellization is generally adequate to quantitatively estimate the onset of micellization. The detennination of erne is usually done by plotting the experimentally measured property or response as a hmction of the logarithm of the surfactant concentration. The intersection of asymptotes fitted to the experimental data or as a breakpoint in the experimental data denotes the erne. A partial listing of experimental... [Pg.2580]

The issue of water in reverse micellar cores is important because water swollen reverse micelles (reverse microemulsions) provide means for carrying almost any water-soluble component into a predominantly oil-continuous solution (see discussions of microemulsions and micellar catalysis below). In tire absence of water it appears tliat premicellar aggregates (pairs, trimers etc.) are commonly found in surfactant-in-oil solutions [47]. Critical micelle concentrations do exist (witli some exceptions). [Pg.2591]

At low concentrations surfactant molecules adsorbed at the surface are in equilibrium with other molecules in solution. Above a threshold concentration, called the critical micelle concentration (cmc, for short), another equilibrium must be considered. This additional equilibrium is that between individual molecules in solution and clusters of emulsifier molecules known as micelles. [Pg.398]

Ahphatic amine oxides behave as typical surfactants in aqueous solutions. Below the critical micelle concentration (CMC), dimethyl dodecyl amine oxide exists as single molecules. Above this concentration micellar (spherical) aggregates predorninate in solution. Ahphatic amine oxides are similar to other typical nonionic surfactants in that their CMC decreases with increasing temperature. [Pg.189]

Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ... Fig. 3. Schematic diagram of anionic surfactant solution at equiUbrium above its critical micelle concentration, where M = micelle and 0 are counterions ...
Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

Surfactant values are at the critical micelle concentration (CMC) in aqueous solution surfactant/defoamer values are at 0.1% concentration in aqueous solution. [Pg.465]

In the latter function, the reagent behaves as a surfactant and forms a cationic micelle at a concentration above the critical micelle concentration (1 x 10 4M for CTMB). The complexation reactions occurring on the surface of the micelles differ from those in simple aqueous solution and result in the formation of a complex of higher ligand to metal ratio than in the simple aqueous system this effect is usually accompanied by a substantial increase in molar absorptivity of the metal complex. [Pg.172]

The pioneering work on amphiphilic polyelectrolytes goes back to 1951, when Strauss et al. [25] first synthesized amphiphilic polycations by quaternization of poly(2-vinylpyridine) with n-dodecyl bromide. They revealed that the long alkyl side chains attached to partially quaternized poly(vinylpyridine)s tended to aggregate in aqueous solution so that the polymers assumed a compact conformation when the mole fraction of the hydrophobic side chains exceeded a certain critical value. Thus, Strauss et al. became the first to show experimentally the intramolecular micellation of amphiphilic polymers and the existence of a critical content of hydrophobic residues which may be compared to the critical micelle concentration of ordinary surfactants. They called such amphiphilic polyelectrolytes polysoaps [25],... [Pg.63]

Very large solvent effects arc also observed for systems where the monomers can aggregate either with themselves or another species. For example, the apparent kp for polymerizable surfactants, such as certain vinyl pyridinium salts and alkyl salts of dimethylaminoalkyl methacrylates, in aqueous solution above the critical micelle concentration (cmc) are dramatically higher than they are below the cmc in water or in non-aqueous media.77 This docs not mean that the value for the kp is higher. The heterogeneity of the medium needs to be considered. In the micellar system, the effective concentration of double bonds in the vicinity of the... [Pg.426]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

The molecular collective behavior of surfactant molecules has been analyzed using the time courses of capillary wave frequency after injection of surfactant aqueous solution onto the liquid-liquid interface [5,8]. Typical power spectra for capillary waves excited at the water-nitrobenzene interface are shown in Fig. 3 (a) without CTAB (cetyltrimethy-lammonium bromide) molecules, and (b) 10 s after the injection of CTAB solution to the water phase [5]. The peak appearing around 10-13 kHz represents the beat frequency, i.e., the capillary wave frequency. The peak of the capillary wave frequency shifts from 12.5 to 10.0kHz on the injection of CTAB solution. This is due to the decrease in interfacial tension caused by the increased number density of surfactant molecules at the interface. Time courses of capillary wave frequency after the injection of different CTAB concentrations into the aqueous phase are reproduced in Fig. 4. An anomalous temporary decrease in capillary wave frequency is observed when the CTAB solution beyond the CMC (critical micelle concentration) was injected. The capillary wave frequency decreases rapidly on injection, and after attaining its minimum value, it increases... [Pg.243]

Aqueous micellar solutions, i.e. solutions containing a surfactant at a concentration above its critical micelle concentration, have been studied extensively during the last decade, in part from curiosity, and because of the possibility of providing unique chromatographic selectivity compared to conventional RPC [345-349]. Above the critical micelle concentration individual surfactant molecules self-aggregate to form structures known as micelles which are microscopically... [Pg.209]

When the variation of any colligative property of a surfactant in aqueous solution is examined, two types of behavior are apparent. At low concentrations, properties approximate those to be expected from ideal behavior. However, at a concentration value that is characteristic for a given surfactant system (critical micelle concentration, CMC), an abrupt deviation from such behavior is observed. At concentrations above the CMC, molecular aggregates called micelles are formed. By increasing the concentration of the surfactant, depending on the chemical and physical nature of the molecule, structural changes to a more... [Pg.256]

The basic mechanism for surfactants to enhance solubility and dissolution is the ability of surface-active molecules to aggregate and form micelles [35], While the mathematical models used to describe surfactant-enhanced dissolution may differ, they all incorporate micellar transport. The basic assumption underlying micelle-facilitated transport is that no enhanced dissolution takes place below the critical micelle concentration of the surfactant solution. This assumption is debatable, since surfactant molecules below the critical micelle concentration may improve the wetting of solids by reducing the surface energy. [Pg.140]

Surfactants, not surprisingly, exert a highly significant influence on the fluorescence of FBAs in solution. This effect is associated with the critical micelle concentration of the surfactant and may be regarded as a special type of solvent effect. Anionic surfactants have almost no influence on the performance of anionic FBAs on cotton, but nonionic surfactants may exert either positive or negative effects on the whiteness of the treated substrate [33]. Cationic surfactants would be expected to have a negative influence, but this is not always so [34]. No general rule can be formulated and each case has to be considered separately. [Pg.306]

It was mentioned previously that the narrow range of concentrations in which sudden changes are produced in the physicochemical properties in solutions of surfactants is known as critical micelle concentration. To determine the value of this parameter the change in one of these properties can be used so normally electrical conductivity, surface tension, or refraction index can be measured. Numerous cmc values have been published, most of them for surfactants that contain hydrocarbon chains of between 10 and 16 carbon atoms [1, 3, 7], The value of the cmc depends on several factors such as the length of the surfactant chain, the presence of electrolytes, temperature, and pressure [7, 14], Some of these values of cmc are shown in Table 2. [Pg.293]

Table 2 Critical Micelle Concentration of Some Surfactants (aqueous solutions at 25°C)... Table 2 Critical Micelle Concentration of Some Surfactants (aqueous solutions at 25°C)...
What characterizes surfactants is their ability to adsorb onto surfaces and to modify the surface properties. At the gas/liquid interface this leads to a reduction in surface tension. Fig. 4.1 shows the dependence of surface tension on the concentration for different surfactant types [39]. It is obvious from this figure that the nonionic surfactants have a lower surface tension for the same alkyl chain length and concentration than the ionic surfactants. The second effect which can be seen from Fig. 4.1 is the discontinuity of the surface tension-concentration curves with a constant value for the surface tension above this point. The breakpoint of the curves can be correlated to the critical micelle concentration (cmc) above which the formation of micellar aggregates can be observed in the bulk phase. These micelles are characteristic for the ability of surfactants to solubilize hydrophobic substances in aqueous solution. So the concentration of surfactant in the washing liquor has at least to be right above the cmc. [Pg.94]

Most studies of micellar systems have been carried out on synthetic surfactants where the polar or ionic head group may be cationic, e.g. an ammonium or pyridinium ion, anionic, e.g. a carboxylate, sulfate or sulfonate ion, non-ionic, e.g. hydroxy-compound, or zwitterionic, e.g. an amine oxide or a carboxylate or sulfonate betaine. Surfactants are often given trivial or trade names, and abbreviations based on either trivial or systematic names are freely used (Fendler and Fendler, 1975). Many commercial surfactants are mixtures so that purity can be a major problem. In addition, some surfactants, e.g. monoalkyl sulfates, decompose slowly in aqueous solution. Some examples of surfactants are given in Table 1, together with values of the critical micelle concentration, cmc. This is the surfactant concentration at the onset of micellization (Mukerjee and Mysels, 1970) and can therefore be taken to be the maximum concentration of monomeric surfactant in a solution (Menger and Portnoy, 1967). Its value is related to the change of free energy on micellization (Fendler and Fendler, 1975 Lindman and Wennerstrom, 1980). [Pg.215]


See other pages where Surfactant solutions critical micelle concentrations is mentioned: [Pg.55]    [Pg.55]    [Pg.625]    [Pg.242]    [Pg.415]    [Pg.480]    [Pg.2572]    [Pg.147]    [Pg.151]    [Pg.427]    [Pg.149]    [Pg.237]    [Pg.361]    [Pg.442]    [Pg.471]    [Pg.281]    [Pg.461]    [Pg.225]    [Pg.260]    [Pg.722]    [Pg.776]    [Pg.481]    [Pg.32]    [Pg.37]    [Pg.144]    [Pg.287]    [Pg.94]    [Pg.182]   
See also in sourсe #XX -- [ Pg.345 , Pg.348 , Pg.349 ]

See also in sourсe #XX -- [ Pg.345 , Pg.348 , Pg.349 ]




SEARCH



CRITICAL SOLUTION

Concentrated solutions

Concentrating solutions

Critical concentration

Critical concentration, solutions

Critical micell concentration

Critical micelle concentration

Critical micelle concentration micellization

Critical micelle concentration pure surfactant solution

Critical micelle concentration surfactants

Critical micellization concentrations

Micelle concentration

Micelles critical micelle concentration

Micellization surfactants

Solute concentration

Solutions solution concentrations

Surfactant concentration

Surfactant solutions

Surfactant solutions micelles

Surfactants concentrated

© 2024 chempedia.info