Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant parameter approach

A detailed justification of the surfactant parameter approach is still the subject of theoretical investigations, and we will return to several issues below. We mention that the surfactant parameter approach is consistent with the fluid mosaic model of Singer and Nicolson. It tells us that the self-assembly of amphiphiles is driven by the strong segregation of water and hydrocarbon chains, and that packing effects dominate the self-assembly process. [Pg.24]

All of the above considerations have sometimes led to a too rigid picture of the membrane structure. Of course, the mentioned types of fluctuations (protrusions, fluctuations in area per molecule, chain interdigitations) do exist and will turn out to be important. Without these, the membrane would lack any mechanism to, for example, adjust to the environmental conditions or to accommodate additives. Here we come to the central theme of this review. In order to come to predictive models for permeation in, and transport through bilayers, it is necessary to go beyond the surfactant parameter approach and the fluid mosaic model. [Pg.24]

Conditions for Biiayer Formation. In order to obtain bilayers or vesicles for an amphiphile of length F, one needs to adjust the interfacial area imtil the surfactant parameter A approaches unity. With the optimum head group area ao from equation 2 and the definition of the packing parameter (eq. 4), one obtains a simple expression that can serve to rationalize the influence of different parameters on the packing parameter... [Pg.6332]

The surfactant packing model and the interfacial curvature description are related. Comparison of Tables 4.2 and 4.3 shows that a decrease in the surfactant parameter corresponds to an increase in mean curvature. The packing parameter approach has also been used to account for the... [Pg.203]

The basis for the foam properties is given by interfacial parameters. Although correlations have been shown between a single parameter and foam properties, there is still a lack in a general correlation between interfacial properties and the foam behavior of complex systems in detergency. The simplest approach to correlate interfacial parameters to foam properties is the comparison of the surface activity measured by the surface tension of a surfactant system and foam stability. [Pg.99]

Here, the mixture analytical FIA-MS-MS approach reached its limitation to identify compounds. Hence, LC separations prior to MS analysis are essential to separate compounds with the same m/z ratio but with different structures. The behaviour in the LC separation will be influenced by characteristic parameters of the surfactant such as linear or strongly branched alkyl chain, the type, the number and the mixture of glycolether groups—PEG and/or PPG—and the ethoxylate chains. The retardation on SPE materials applied for extraction and/or concentration also depends on these properties and can therefore be used for an appropriate pre-separation of non-ionic surfactants in complex environmental samples as well as in industrial blends and household detergent formulations. A sequential selective elution from SPE cartridges using solvents or their mixtures can improve this preseparation and saves time in the later LC separation [22],... [Pg.259]

Fluorescence is also a powerful tool for investigating the structure and dynamics of matter or living systems at a molecular or supramolecular level. Polymers, solutions of surfactants, solid surfaces, biological membranes, proteins, nucleic acids and living cells are well-known examples of systems in which estimates of local parameters such as polarity, fluidity, order, molecular mobility and electrical potential is possible by means of fluorescent molecules playing the role of probes. The latter can be intrinsic or introduced on purpose. The high sensitivity of fluo-rimetric methods in conjunction with the specificity of the response of probes to their microenvironment contribute towards the success of this approach. Another factor is the ability of probes to provide information on dynamics of fast phenomena and/or the structural parameters of the system under study. [Pg.393]

The mixed cmc behavior of these (and many other) mixed surfactant systems can be adequately described by a nonideal mixed micelle model based on the psuedo-phase separation approach and a regular solution approximation with a single net interaction parameter B. However, the heats of micellar mixing measured by calorimetry show that the assumptions of the regular solution approximation do not hold for the systems investigated in this paper. This suggests that in these cases the net interaction parameter in the nonideal mixed micelle model should be interpreted as an excess free energy parameter. [Pg.150]

Emulsilication through phase inversion is based on a change in the surfactant spontaneous curvature induced by temperature. This concept can be generalized considering any parameter influencing the spontaneous curvature of a surfactant, for example, salinity, pH, presence of a cosurfactant, and nature of the oil. The concept of inversion has often been reported in the literature by means of a formulation-composition map. In the following, we shall sum up this empirical approach which can be useful for formulators. [Pg.14]

It is probable that numerous interfacial parameters are involved (surface tension, spontaneous curvature, Gibbs elasticity, surface forces) and differ from one system to the other, according the nature of the surfactants and of the dispersed phase. Only systematic measurements of > will allow going beyond empirics. Besides the numerous fundamental questions, it is also necessary to measure practical reason, which is predicting the emulsion lifetime. This remains a serious challenge for anyone working in the field of emulsions because of the polydisperse and complex evolution of the droplet size distribution. Finally, it is clear that the mean-field approaches adopted to measure > are acceptable as long as the droplet polydispersity remains quite low (P < 50%) and that more elaborate models are required for very polydisperse systems to account for the spatial fiuctuations in the droplet distribution. [Pg.169]

The deviations from the Szyszkowski-Langmuir adsorption theory have led to the proposal of a munber of models for the equihbrium adsorption of surfactants at the gas-Uquid interface. The aim of this paper is to critically analyze the theories and assess their applicabihty to the adsorption of both ionic and nonionic surfactants at the gas-hquid interface. The thermodynamic approach of Butler [14] and the Lucassen-Reynders dividing surface [15] will be used to describe the adsorption layer state and adsorption isotherm as a function of partial molecular area for adsorbed nonionic surfactants. The traditional approach with the Gibbs dividing surface and Gibbs adsorption isotherm, and the Gouy-Chapman electrical double layer electrostatics will be used to describe the adsorption of ionic surfactants and ionic-nonionic surfactant mixtures. The fimdamental modeling of the adsorption processes and the molecular interactions in the adsorption layers will be developed to predict the parameters of the proposed models and improve the adsorption models for ionic surfactants. Finally, experimental data for surface tension will be used to validate the proposed adsorption models. [Pg.27]

Using this approach, a model can be developed by considering the chemical potentials of the individual surfactant components. Here, we consider only the region where the adsorbed monolayer is "saturated" with surfactant (for example, at or above the cmc) and where no "bulk-like" water is present at the interface. Under these conditions the sum of the surface mole fractions of surfactant is assumed to equal unity. This approach diverges from standard treatments of adsorption at interfaces (see ref 28) in that the solvent is not explicitly Included in the treatment. While the "residual" solvent at the interface can clearly effect the surface free energy of the system, we now consider these effects to be accounted for in the standard chemical potentials at the surface and in the nonideal net interaction parameter in the mixed pseudo-phase. [Pg.104]

The model provides a good approach for the biotransformation system and highlights the main parameters involved. However, prediction of mass transfer effects on the outcome of the process, through evaluation of changes in the mass transfer coefficients, is rather difficult. A similar mass transfer reaction model, but based on the two-film model for mass transfer for a transformation occurring in the bulk aqueous phase as shown in Figure 8.3, could prove quite useful. Each of the films presents a resistance to mass transfer, but concentrations in the two fluids are in equilibrium at the interface, an assumption that holds provided surfactants do not accumulate at the interface and mass transfer rates are extremely high [36]. [Pg.201]

When two droplets - one of surfactant solution and the other of oily soil - are set on a solid surface, on the basal plane two wetting tensions jA and jB will act [3]. When the two droplets approach each other, so that a common interface is formed, at the contact line the difference of the wetting tension will act. This parameter is called oil displacement tension ... [Pg.58]


See other pages where Surfactant parameter approach is mentioned: [Pg.22]    [Pg.31]    [Pg.155]    [Pg.219]    [Pg.22]    [Pg.31]    [Pg.155]    [Pg.219]    [Pg.121]    [Pg.36]    [Pg.501]    [Pg.40]    [Pg.232]    [Pg.161]    [Pg.208]    [Pg.397]    [Pg.689]    [Pg.716]    [Pg.259]    [Pg.2]    [Pg.253]    [Pg.50]    [Pg.286]    [Pg.142]    [Pg.237]    [Pg.142]    [Pg.53]    [Pg.207]    [Pg.109]    [Pg.205]    [Pg.23]    [Pg.206]    [Pg.398]    [Pg.140]    [Pg.81]    [Pg.295]    [Pg.58]    [Pg.79]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Surfactant parameter approach surfactants

Surfactant parameter approach surfactants

© 2024 chempedia.info