Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy Surface Reflectance

Spectroscopies such as UV-visible absorption and phosphorescence and fluorescence detection are routinely used to probe electronic transitions in bulk materials, but they are seldom used to look at the properties of surfaces [72]. As with other optical techniques, one of the main problems here is the lack of surface discrimination, a problem that has sometime been b q)assed by either using thin films of the materials of interest [73, 74], or by using a reflection detection scheme. Modulation of a parameter, such as electric or magnetic fields, stress, or temperature, which affects the optical properties of the sample and detection of the AC component of the signal induced by such periodic changes, can also be used to achieve good surface sensitivity [75]. This latter approach is the basis for techniques such as surface reflectance spectroscopy, reflectance difference spectroscopy/reflectance anisotropy spectroscopy, surface photoadsorption... [Pg.1793]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

While electron or ion beam techniques can only be applied under ultra-high vacuum, optical techniques have no specific requirements concerning sample environment and are generally easier to use. The surface information which can be obtained is, however, quite different and mostly does not contain direct chemical information. While with infra-red attenuated total reflection spectroscopy (IR-ATR) a deep surface area with a typical depth of some micrometers is investigated, other techniques like phase-measurement interference microscopy (PMIM) have, due to interference effects, a much better surface sensitivity. PMIM is a very quick technique for surface roughness and homogeneity inspection with subnanometer resolution. [Pg.367]

In situ Fourier transform infrared and in situ infrared reflection spectroscopies have been used to study the electrical double layer structure and adsorption of various species at low-index single-crystal faces of Au, Pt, and other electrodes.206"210 It has been shown that if the ions in the solution have vibrational bands, it is possible to relate their excess density to the experimentally observed surface. [Pg.41]

Spherical rollers were machined from AISI 52100 steel, hardened to a Rockwell hardness of Rc 60 and manually polished with diamond paste to RMS surface roughness of 5 nm. Two glass disks with a different thickness of the silica spacer layer are used. For thin film colorimetric interferometry, a spacer layer about 190 nm thick is employed whereas FECO interferometry requires a thicker spacer layer, approximately 500 nm. In both cases, the layer was deposited by the reactive electron beam evaporation process and it covers the entire underside of the glass disk with the exception of a narrow radial strip. The refractive index of the spacer layer was determined by reflection spectroscopy and its value for a wavelength of 550 nm is 1.47. [Pg.12]

Some of the transition metal macrocycles adsorbed on electrode surfaces are of special Interest because of their high catalytic activity for dloxygen reduction. The Interaction of the adsorbed macrocycles with the substrate and their orientation are of Importance In understanding the factors controlling their catalytic activity. In situ spectroscopic techniques which have been used to examine these electrocatalytlc layers Include visible reflectance spectroscopy surface enhanced and resonant Raman and Mossbauer effect spectroscopy. This paper Is focused principally on the cobalt and Iron phthalocyanlnes on silver and carbon electrode substrates. [Pg.535]

Of special Interest as O2 reduction electrocatalysts are the transition metal macrocycles In the form of layers adsorptlvely attached, chemically bonded or simply physically deposited on an electrode substrate Some of these complexes catalyze the 4-electron reduction of O2 to H2O or 0H while others catalyze principally the 2-electron reduction to the peroxide and/or the peroxide elimination reactions. Various situ spectroscopic techniques have been used to examine the state of these transition metal macrocycle layers on carbon, graphite and metal substrates under various electrochemical conditions. These techniques have Included (a) visible reflectance spectroscopy (b) laser Raman spectroscopy, utilizing surface enhanced Raman scattering and resonant Raman and (c) Mossbauer spectroscopy. This paper will focus on principally the cobalt and Iron phthalocyanlnes and porphyrins. [Pg.535]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

The different species formed by steps (18) to (20) or (18 ) to (20 ) have been detected by in situ infrared reflectance spectroscopy, and such dissociative steps are now widely accepted even if the exact nature of the species formed during (20) or (20 ) is still a subject of discussion. Several groups proposed the species (COH)3js as the main, strongly adsorbed species on the platinum surface, even though no absorption infrared band can be definitely attributed to (COH),, . However, the formyl-like species ( CHO), , . has been formally identified, since it gives an IR absorption band ataroimd 1690cm . ... [Pg.79]

The different kinds of adsorbed CO were observed by in situ infrared reflectance spectroscopy. The results showed that using bulk Pt-Ru alloys, the adsorbed CO species formed by dissociation of methanol, or from dissolved CO on the surface of the electrode, are different on R and on Ru. The adsorption of CO occurs on pure Pt and Ru and on alloys of different compositions, but a shift detected in the wave number of the... [Pg.90]

The Au contents were analyzed by ICP. UV-vis diftuse reflectance spectroscopy (DRS) was performed on a Varian Cary IE UV-VIS Spectrometer. X-ray diftfaction patterns were coUected using a Rigaku dififtactometer with Cu radiation. The surface area and the pore size distribution was obtained using nitrogen adsorption. [Pg.702]

In the early work of Bewick and Robinson (1975), a simple monochromator system was used. This is called a dispersive spectrometer. In the experiment the electrode potential was modulated between two potentials, one where the adsorbed species was present and the other where it was absent. Because of the thin electrolyte layer, the modulation frequency is limited to a few hertz. This technique is referred to as electrochemically modulated infrared reflectance spectroscopy (EMIRS). The main problem with this technique is that data acquisition time is long. So it is possible for changes to occur on the electrode surface. [Pg.504]

Ean Q, Pu C, Ley KL, Smotkin ES. 1996. In situ FTIR-diffuse reflectance spectroscopy of the anode surface in a direct methanol fuel cell. J Electrochem Soc 143 L21-L23. [Pg.456]

In situ UV-Vis Diffuse Reflectance Spectroscopy was performed under reactive atmosphere ( -butane/oxygen). These experiments confirmed that submitting the catalyst to the reaction mixture favors the development of a more oxidized active surface, and that the extent of transformation depends on the reaction temperature and on the catalyst P/V ratio. For instance, catalyst P/V 1.06 was less oxidized than catalyst P/V 1.00 at a temperature lower than 340°C. X-ray Photoelectron spectra of catalysts recorded after reaction at 380°C confirmed that catalyst P/V 1.00 was considerably more oxidized (average oxidation state for surface V 4.23) than the P/V 1.06 catalyst (average oxidation state 4.03). [Pg.489]

Multiple Internal Reflection Spectroscopy (MIR) is an alternative approach in which the IR beam is passed through a thin, IR transmitting sample such that it undergoes total internal reflection alternately from the front and rear faces of the sample (Figure 3.1(b)). At each reflection, some of the IT radiation may be absorbed by species adsorbed on the solid surface. [Pg.42]

The most important methods used in in-situ studies of electrode surfaces are various modifications of reflection spectroscopy in the ultraviolet through infrared regions. For electrochemical applications, the specular reflection (at smooth electrode surfaces) is much more important than the diffuse reflection from matt surfaces. The reflectivity, R, of the electrode/ electrolyte interface is defined by ... [Pg.342]


See other pages where Spectroscopy Surface Reflectance is mentioned: [Pg.322]    [Pg.126]    [Pg.128]    [Pg.286]    [Pg.322]    [Pg.126]    [Pg.128]    [Pg.286]    [Pg.1264]    [Pg.1781]    [Pg.1785]    [Pg.439]    [Pg.314]    [Pg.124]    [Pg.259]    [Pg.224]    [Pg.253]    [Pg.391]    [Pg.66]    [Pg.358]    [Pg.550]    [Pg.89]    [Pg.469]    [Pg.136]    [Pg.210]    [Pg.314]    [Pg.20]    [Pg.599]    [Pg.341]    [Pg.344]    [Pg.345]    [Pg.346]    [Pg.99]    [Pg.134]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Attenuated total reflectance surface-enhanced infrared absorption spectroscopy

Plastic surfaces, reflectance spectroscopy

Reflectance spectroscopy

Reflection spectroscopy

Reflectivity spectroscopy

Surface Reflectance Infrared Spectroscopy (SRIRS)

Surface reflectance

Surface reflectance infrared spectroscopy

Surface reflectivity

Surface spectroscopy

Surface vibrational spectroscopy reflection-absorption infrared spectra

UV-visible Reflectance Spectroscopy of Thin Organic Films at Electrode Surfaces

© 2024 chempedia.info