Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface spectroscopy spectrometry

In this chapter, we have chosen from the scientific literature accounts of symposia published at intervals during the period 1920 1990. They are personal choices illustrating what we believe reflect significant developments in experimental techniques and concepts during this time. Initially there was a dependence on gas-phase pressure measurements and the construction of adsorption isotherms, followed by the development of mass spectrometry for gas analysis, surface spectroscopies with infrared spectroscopy dominant, but soon to be followed by Auger and photoelectron spectroscopy, field emission, field ionisation and diffraction methods. [Pg.9]

Infrared emission spectroscopy can be used for the laboratory study of heated samples as one would encounter in pyrot reactions or in the detonation of primary expls. One difficulty associated with the measurement of emission spectra of condensed phase samples is that the temp of the sample has to be uniform, or else radiation emitted from elements situated below the surface will be absorbed by the cooler particles near the surface. Emission spectrometry finds application in the study of flames and smoke... [Pg.694]

In chemical reaction kinetics, isotope-labelled reactants are frequently employed to follow a reaction pathway and to determine the reaction mechanism (see Chapter 7.6). The isotopic tracer technique is a useful tool in catalyst surface analysis, because it enables determination of whether the adsorbed species present on the surface during the reaction are by-products or reaction intermediates. One of the adsorbed species is labelled by an isotope atom and its rate of disappearance is followed by surface spectroscopy. Simultaneously, its rate of appearance in the product molecule is followed by mass spectrometry. When both rates are identical, it can be concluded that the observed adsorbed species is the reaction intermediate. [Pg.292]

The student should be aware that there is another class of surface analysis instruments based on analytical microscopy, including scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy. A discussion of these microscopy techniques is beyond the scope of this chapter. Most industrial materials characterization laboratories will have some combination of electron spectroscopy. X-ray analysis, surface mass spectrometry, and analytical microscopy instrumentation available, depending on the needs of the industry. [Pg.1001]

Surface mass spectrometry (MS) techniques measure the masses of fragment ions that are ejected from the surface of a sample to identify the elements and molecules present. The techniques are complementary to electron spectroscopy since they provide extra absolute and surface sensitivity and give very specific molecular information. For unknown samples it is common to use a combination of electron spectroscopy and MS for surface characterisation. There are two methods of surface mass spectrometry used in polymer analysis SIMS and laser ionisation mass analysis (LIMA). Of these SIMS is by far the most important. [Pg.186]

The major role of TOF-SARS and SARIS is as surface structure analysis teclmiques which are capable of probing the positions of all elements with an accuracy of <0.1 A. They are sensitive to short-range order, i.e. individual interatomic spacings that are <10 A. They provide a direct measure of the interatomic distances in the first and subsurface layers and a measure of surface periodicity in real space. One of its most important applications is the direct determination of hydrogen adsorption sites by recoiling spectrometry [12, 4T ]. Most other surface structure teclmiques do not detect hydrogen, with the possible exception of He atom scattering and vibrational spectroscopy. [Pg.1823]

Barish E L, Vitkavage D J and Mayer T M 1985 Sputtering of chlorinated silicon surfaces studied by secondary ion mass spectrometry and ion scattering spectroscopy J. AppL Phys. 57 1336-42... [Pg.2941]

The development of methods using sorbents modified with analytical reagents that enable analytical signal measuring directly on the surface by solid-phase spectrometry, visually or by electrothermic atomic absorption spectroscopy (ETAAS) after elution is now a subject of growing interest. [Pg.292]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

One other technique has become central in surface research this is X-ray photoelectron spectrometry, earlier known as ESCA, electron spectroscopy for chemical analysis . Photoelectrons are emitted from a surface irradiated by X-rays. The precautions which have to be taken to ensure accurate quantitative analysis by this much-used technique are set out by Seah (1980). [Pg.408]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

His researches and those of his pupils led to his formulation in the twenties of the concept of active catalytic centers and the heterogeneity of catalytic and adsorptive surfaces. His catalytic studies were supplemented by researches carried out simultaneously on kinetics of homogeneous gas reactions and photochemistry. The thirties saw Hugh Taylor utilizing more and more of the techniques developed by physicists. Thermal conductivity for ortho-para hydrogen analysis resulted in his use of these species for surface characterization. The discovery of deuterium prompted him to set up production of this isotope by electrolysis on a large scale of several cubic centimeters. This gave him and others a supply of this valuable tracer for catalytic studies. For analysis he invoked not only thermal conductivity, but infrared spectroscopy and mass spectrometry. To ex-... [Pg.444]

The control of materials purity and of environmental conditions requires to implement physico-chemical analysis tools like ESC A, RBS, AUGER, SEM, XTM, SIMS or others. The principle of SIMS (Secondary Ion Mass Spectroscopy) is shown in Eig. 31 an ion gun projects common ions (like 0+, Ar+, Cs+, Ga+,. ..) onto the sample to analyze. In the same time a flood gun projects an electron beam on the sample to neutralize the clusters. The sample surface ejects electrons, which are detected with a scintillator, and secondary ions which are detected by mass spectrometry with a magnetic quadrupole. [Pg.340]

Further structural information is available from physical methods of surface analysis such as scanning electron microscopy (SEM), X-ray photoelectron or Auger electron spectroscopy (XPS), or secondary-ion mass spectrometry (SIMS), and transmission or reflectance IR and UV/VIS spectroscopy. The application of both electroanalytical and surface spectroscopic methods has been thoroughly reviewed and appropriate methods are given in most of the references of this chapter. [Pg.60]

Elementary steps in which a bond is broken form a particularly important class of reactions in catalysis. The essence of catalytic action is often that the catalyst activates a strong bond that cannot be broken in a direct reaction, but which is effectively weakened in the interaction with the surface, as we explained in Chapter 6. To monitor a dissociation reaction we need special techniques. Temperature-programmed desorption is an excellent tool for monitoring reactions in which products desorb. However, when the reaction products remain on the surface, one needs to employ different methods such as infrared spectroscopy or secondary-ion mass spectrometry (SIMS). [Pg.282]


See other pages where Surface spectroscopy spectrometry is mentioned: [Pg.113]    [Pg.106]    [Pg.878]    [Pg.820]    [Pg.193]    [Pg.1828]    [Pg.1851]    [Pg.2725]    [Pg.8]    [Pg.208]    [Pg.265]    [Pg.1]    [Pg.356]    [Pg.297]    [Pg.317]    [Pg.541]    [Pg.3]    [Pg.418]    [Pg.604]    [Pg.700]    [Pg.235]    [Pg.415]    [Pg.553]    [Pg.33]    [Pg.139]    [Pg.265]    [Pg.176]    [Pg.185]    [Pg.230]    [Pg.39]    [Pg.150]    [Pg.80]   


SEARCH



Spectroscopy spectrometry

Surface spectroscopy

© 2024 chempedia.info