Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface property effect

Local Flow Obstruction and Surface Property Effects... [Pg.419]

Arik, M. and Bar-Cohen, A., 2003, Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHE of Dielectric Liquids, International Journal of Heat and Mass Transfer, 46, pp. 3755-3764... [Pg.336]

In addition to changes to the cationic structure, the Si/Al ratio can be varied during manufacture from unity to well over 1000. Thus zeolites with widely different adsorptive properties may be tailored by the appropriate choice of framework structure, cationic form and silica to alumina ratio in order to achieve the selectivity required for a given separation. Many zeolites are extremely polar and therefore separations may be effected using both molecular sieving and internal surface property effects. The kinetic selectivity is determined from the free diameters of the windows in the intra-crystalline channel structure. Examples of such diameters, together with the principal properties and main uses of zeolites, are given in Table 2.4. [Pg.26]

While field ion microscopy has provided an effective means to visualize surface atoms and adsorbates, field emission is the preferred technique for measurement of the energetic properties of the surface. The effect of an applied field on the rate of electron emission was described by Fowler and Nordheim [65] and is shown schematically in Fig. Vlll 5. In the absence of a field, a barrier corresponding to the thermionic work function, prevents electrons from escaping from the Fermi level. An applied field, reduces this barrier to 4> - F, where the potential V decreases linearly with distance according to V = xF. Quantum-mechanical tunneling is now possible through this finite barrier, and the solufion for an electron in a finite potential box gives... [Pg.300]

An important application of foams arises in foam displacement, another means to aid enhanced oil recovery. The effectiveness of various foams in displacing oil from porous media has been studied by Shah and co-workers [237, 238]. The displacement efficiency depends on numerous physicochemical variables such as surfactant chain length and temperature with the surface properties of the foaming solution being an important determinant of performance. [Pg.525]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]

Sonochemistry is also proving to have important applications with polymeric materials. Substantial work has been accomplished in the sonochemical initiation of polymerisation and in the modification of polymers after synthesis (3,5). The use of sonolysis to create radicals which function as radical initiators has been well explored. Similarly the use of sonochemicaHy prepared radicals and other reactive species to modify the surface properties of polymers is being developed, particularly by G. Price. Other effects of ultrasound on long chain polymers tend to be mechanical cleavage, which produces relatively uniform size distributions of shorter chain lengths. [Pg.263]

J) The extreme fineness of iadividual clay particles, which may be of colloidal size ia at least one dimension. Clay minerals are usually platy ia shape, and less often lathlike and tubular or scroU shaped (13). Because of this fineness clays exhibit the surface chemical properties of coUoids (qv) (14). Some clays possess relatively open crystal lattices and show internal surface colloidal effects. Other minerals and rock particles, which are not hydrous aluminosihcates but which also show colloidal dimensions and characteristics, may occur intimately intermixed with the clay minerals and play an essential role. [Pg.194]

Based on the requirements of the separation, media of suitable pore size, particle size, and surface properties are selected as well as column dimensions and column material. In some cases a suitable combination of media type and column dimensions may be available as a prepacked column. In most cases, this is a more expensive alternative to preparing the column yourself but will provide a consistent quality as assured by the manufacturing and testing procedures of the vendor. The consistent quality may be critical in obtaining reproducible results and may thus be a cost-effective solution. Also, the fact that smaller particle-sized media are more difficult to pack and require special, and expensive, equipment has resulted in that gel filtration media of small particle size, e.g. smaller than 15 /zm, are predominantly supplied as prepacked columns. [Pg.61]

In the pulp and paper industry, anionic and cationic acrylamide polymers are used as chemical additives or processing aids. The positive effect is achieved due to a fuller retention of the filler (basically kaoline) in the paper pulp, so that the structure of the paper sheet surface layer improves. Copolymers of acrylamide with vi-nylamine not only attach better qualities to the surface layer of.paper, they also add to the tensile properties of paper in the wet state. Paper reinforcement with anionic polymers is due to the formation of complexes between the polymer additive and ions of Cr and Cu incorporated in the paper pulp. The direct effect of acrylamide polymers on strength increases and improved surface properties of paper sheets is accompanied by a fuller extraction of metallic ions (iron and cobalt, in addition to those mentioned above), which improves effluent water quality. [Pg.71]

When dark roofs are heated by the sun, they directly raise summertime building cooling demand. For highly absorptive (low-albedo) roofs, the surface/ambient air temperature difference may be 50°C (90°F), while for less absorptive (high-albedo) surfaces with similar insu-lative properties (e.g., white-coated roofs), the difference is only about 10°C (18 F), which means that cool surfaces can effectively reduce cooling-energy use. [Pg.304]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

The recovery of petroleum from sandstone and the release of kerogen from oil shale and tar sands both depend strongly on the microstmcture and surface properties of these porous media. The interfacial properties of complex liquid agents—mixtures of polymers and surfactants—are critical to viscosity control in tertiary oil recovery and to the comminution of minerals and coal. The corrosion and wear of mechanical parts are influenced by the composition and stmcture of metal surfaces, as well as by the interaction of lubricants with these surfaces. Microstmcture and surface properties are vitally important to both the performance of electrodes in electrochemical processes and the effectiveness of catalysts. Advances in synthetic chemistry are opening the door to the design of zeolites and layered compounds with tightly specified properties to provide the desired catalytic activity and separation selectivity. [Pg.169]

Currently, the effect of the molecular quadrupoles on liquid crystal properties is not clearly understood though there is some evidence to suggest that they influence surface properties and phase stability [28, 60]. [Pg.26]


See other pages where Surface property effect is mentioned: [Pg.326]    [Pg.327]    [Pg.1531]    [Pg.326]    [Pg.327]    [Pg.1531]    [Pg.370]    [Pg.381]    [Pg.410]    [Pg.16]    [Pg.533]    [Pg.7]    [Pg.12]    [Pg.544]    [Pg.307]    [Pg.209]    [Pg.462]    [Pg.126]    [Pg.557]    [Pg.705]    [Pg.1019]    [Pg.108]    [Pg.378]    [Pg.256]    [Pg.695]    [Pg.533]    [Pg.192]    [Pg.51]    [Pg.65]    [Pg.211]    [Pg.178]    [Pg.479]    [Pg.794]   
See also in sourсe #XX -- [ Pg.492 , Pg.493 , Pg.495 ]




SEARCH



Effect of Surface Structure on Bulk Electronic Properties

Effect of Surface Treatment and Sizing on Composite Properties

Effect of Surface Treatment on Fiber Properties

Effect of surface phenomena and mechanical properties

Effects of different surface properties

Effects of surface modification on filler properties

Structure-property relationship surface properties effect

Surface Treatments of Fibers and Effects on Composite Properties

Surface chemical properties thermal treatment effect

Surface fluorination effect on polymer properties

Surface properties moisture effects

Surface properties segregation effects

Surface properties tribological effects

Wetting properties effect water-surface effects

© 2024 chempedia.info